Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Predictive Analytics Toolkit: Open Standards and Cloud Computing
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > Predictive Analytics Toolkit: Open Standards and Cloud Computing
Data Warehousing

Predictive Analytics Toolkit: Open Standards and Cloud Computing

MichaelZeller
MichaelZeller
3 Min Read
SHARE

Organizations around the globe increasingly recognize the value that predictive analytics off

Organizations around the globe increasingly recognize the value that predictive analytics offers to their business. The complexity of development, integration, and deployment of predictive models, however, is often considered cost-prohibitive for many projects. In light of mature open source solutions, open standards, and SOA principles we offer an agile model development life cycle that allows us to quickly leverage predictive analytics in operational environments.

Starting with data analysis and model development, you can effectively use the Predictive Model Markup Language (PMML) standard, to move complex decision models from the scientist’s desktop into a scalable production environment hosted on the Amazon Elastic Compute Cloud (Amazon EC2).

Expressing Models in PMML

More Read

Why PC’s still suck
Connecting the BI Dots: An Introduction
Twitter @ddata Discuss Data bot
ReBlog: On Why I Don’t Like Auto-Scaling in the Cloud
Business Intelligence and Finance

PMML is an XML-based language used to define predictive models. It was specified by the Data Mining Group (DMG), an independent group of leading technology companies including Zementis. By providing a uniform standard to represent such models, PMML allows for the exchange of predictive solutions between different applications and various vendors.

Open source statistical tools such as R can be used to develop data mining models based on historical data. R allows for models to be exported into PMML which can then be imported into an operational decision platform and be ready for production use in a matter of minutes.

On-Demand Predictive Analytics

Amazon EC2 is a reliable, on-demand infrastructure on which we offer the ADAPA Predictive Decisioning Engine based on the Software as a Service (SaaS) paradigm. ADAPA imports models expressed in PMML and executes these in batch mode, or real-time via web-services.

Our service is implemented as a private, dedicated Amazon EC2 instance of ADAPA. Each client has access to his/her own ADAPA instance via HTTP/HTTPS. In this way, models and data for one client never share the same engine with other clients.

Using a SaaS solution to break down traditional barriers that currently slow the adoption of predictive analytics, our strategy translates predictive models into operational assets with minimal deployment costs and leverages the inherent scalability of utility computing.

In summary, ADAPA allows for:

  • Cost-effective and reliable service based on Amazon’s EC2 infrastructure
  • Secure execution of predictive models through dedicated and controlled instances including HTTPS and Web-Services security
  • On-demand computing. Choice of instance type (small, large, extra-large, …) and launch of multiple instances.
  • Superior time-to-market by providing rapid deployment of predictive models and an agile enterprise decision management environment.

For a practical guide, watch:

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Apple Introduces Revolutionary New Laptop With No Keyboard | The…

0 Min Read

Beyond the Buzz: The Quiet Thunder of Active Data Warehousing

4 Min Read

The Problem with the Relational Database (Part 1 ) –The Deployment Model

6 Min Read
Data Catalog
AnalyticsData ManagementData MiningData QualityData Warehousing

Moving to Self-Serve Analytics? You Need a Data Catalog

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?