Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Predictive Analytics: The Dos and Don’ts
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Predictive Analytics: The Dos and Don’ts
Big DataPredictive Analytics

Predictive Analytics: The Dos and Don’ts

InfoBldrs
InfoBldrs
6 Min Read
Image
SHARE

For organizations looking to make the most out of their relationships and processes, the discovery of meaningful information via analysis can often prove valuable and lead to substantial insight. Data that reveals facts about customers, for example—such as identifying customers who cancel accounts and leave for the competition, those in a specific cross-demographic, or even those in a specific income range who have contacted the call center three or more times in the last six months—is data that can be acted upon.

These insights allow for a deeper understanding of not just customer behavior, but also logistical bottlenecks, project effectiveness and more. But to get the most value from these insights, it’s necessary to extend findings into business activities via predictive analytics. This means utilizing insights to identify where slowdowns in processes are, and take steps to alleviate it on future loops or predict a customer’s future behavior.

To achieve positive results with predictive analytics initiatives and ensure the results are integrated with business processes, there are numerous aspects to prioritize—and pitfalls to avoid. Indeed, there are countless ways predictive analytics can enhance processes, but before they are put into use organizations must consider the following “Do’s” and “Don’ts”:

  • DO: Make proactive rather than reactive decisions – Results provide insight on likely behaviors. Armed with this information, organizations can encourage positive activities and reduce negative ones.
  • DON’T: Fail to focus on a specific business initiative – Focusing on a specific business initiative reduces the chance of “analysis paralysis,” where effort is wasted on trying to fit the analysis findings to an undefined objective.
  • DO: Focus on projects that will impact the bottom line: either generate profits or reduce costs – These types of projects are more tangible and this easier to gain approval for, which enables an organization to capitalize on gathered data.
  • DON’T: Ignore crucial steps, such as data preparation and access – When deploying predictive analytics, many companies overlook important steps in the process. One of the most frequently ignored is data preparation and access. In reality, this should be the activity to which the most effort is devoted. In fact, data preparation typically accounts for approximately 60 to 80 percent of the cost of a predictive modeling initiative.
  • DO: Take a broad view of the process and develop a holistic approach to the solution – If you focus only on one aspect—i.e. gathering a certain set of data points—it’s possible you won’t be as prepared as needed for the process of leveraging it, and time is often of the essence as data is constantly changing. Ensure ahead of time that options are available for acting on predictive analytics when you’ve gathered the insight.
  • DON’T: Spend too much time evaluating models – Companies often tend to over-evaluate. They add new variables to the models to increase their accuracy, which often requires rebuilding, delays deployment, and prevents the organization from realizing the substantial advantages that predictive analytics can offer.
  • DO: Perform a thorough collection and exploration of the data – Identifying data quality issues, gleaning initial insight, and detecting relevant subsets not only enables those working with the data to become more familiar with it but helps assure that any analyses performed will be done more efficiently and with greater accuracy.
  • DON’T: Invest in tools that yield little or no returns – When it comes to the computing environment, organizations typically look to implement two systems: one for predictive analytics, and a reporting system to deliver results. This creates additional and unnecessary hardware, support, and maintenance costs. A simpler and more cost-effective approach is to combine these into a single environment.
  • DO: Prepare the data – Be careful to select the relevant data when choosing tables, records, and attributes from various sources across the business. Data must then be transformed, merged, aggregated, derived, sampled, and weighed. It is then cleaned and enhanced to optimize results.
  • DON’T: Fail to operationalize findings – If an application is not built and deployed, or a tangible change to a process made as a result of predictive analytics findings, the effort devoted to preparing and creating a model, not to mention collecting and analyzing data, will have done nothing to enhance forward-looking decision-making. The results will remain in a document that few people will refer to in support of their daily activities.
  • DO: Select and apply various modeling techniques – In addition to having properly prepared data, you must be sure to use the analysis techniques that are best suited for your purpose. Some techniques may explain the underlying patterns in data from a more useful angle than others, and therefore the outcomes of various modeling methods must be compared.

Avoiding these common planning errors and adopting the best practices outlined above can be the difference between successfully implemented predictive analytics and wasted potential. These do’s and don’ts are a roadmap to help organizations take complete advantage of their data, accelerate implementations, and glean insights that can be acted upon.

More Read

smart data for business cost reduction
Data Mining Vital Statistics Yields Fascinating Societal Insights
Themes from a Chief Data Officer Forum – the 180 day perspective
HR Professionals Say These Big Data Jobs are in High Demand
Embracing Big Data Technology Makes Traders’ Lives Much Easier
Big Data and the Wizard of Oz Syndrome

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

nick morrison fhnnjk1yj7y unsplash
Big DataData ScienceExclusive

Are Online Data Science Degrees Truly Inclusive?

9 Min Read
Image
AnalyticsBig Data

The Art of “Telling the Story” in Analytics

5 Min Read

Amazon’s Cloud Computing Giant is Getting Closer to Full Takeover

4 Min Read
data perspective
Big Data

Tackling Bias in AI Translation: A Data Perspective

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?