Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
    data analytics for trademark registration
    Optimizing Trademark Registration with Data Analytics
    6 Min Read
    data analytics for finding zip codes
    Unlocking Zip Code Insights with Data Analytics
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Political Revolutions on Twitter, Visualized with R
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Visualization > Political Revolutions on Twitter, Visualized with R
Data VisualizationR Programming Language

Political Revolutions on Twitter, Visualized with R

DavidMSmith
DavidMSmith
3 Min Read
SHARE

Twitter has become a powerful medium for organizing and communicating with factions during popular uprisings: the crisis in Egypt, the uprising in Syria, the revolution in Iran, and other conflicts all around the world.

Twitter has become a powerful medium for organizing and communicating with factions during popular uprisings: the crisis in Egypt, the uprising in Syria, the revolution in Iran, and other conflicts all around the world. Twitter’s effectiveness relies on its ability for the various factions to self-organize and to fight the information battle in social media.

Esteban Moro Egido, a mathematics professor at Universidad Carlos III in Madrid, puts this battle into stark relief with a video depicting Twitter activity around Spain’s general strike in March this year. Esteban has used the R language for years to understand complex networks with applications in areas such as telecommunications and social media, and has put those skills to great use analyzing all of the tweets, retweets and mentions related to the strike. Here’s the video:

 

More Read

Lessons from F1 racing: Timely Decisions Get You on the Podium
Data Visualization – A Growing Business Need
Analytic Applications are Built by Data Scientists
How MapR’s M7 Platform Improves NoSQL and Hadoop
Upcoming R training Classes, Live from the Experts

Each point in the animation represents a twitter user, each colour-coded according to their faction in the debate (pro-strike, anti-strike, or somewhere in between). He used community-finiding algorithms to automatically assign Twitter users to factions, and Esteban described the factions in an email:

The communities where identified using one of the community-finding algorithms in R. Specifically the walk trap algorithm run over the static graph of (weighted) RT graph between twitter accounts. So each Twitter account is assigned to a particular community right from the beginning. 

What we did afterwards was to check what these communities were talking about (tweets and RTs). We found that the tweets and RTs in the orange community were in favor of the general strike and the reasons behind it, while the tweets and RTs in the dark blue community were against the unions and the reasons behind the general strike. It is interesting to see that the communities found in the structural analysis of the RT graph also correspond to opinion communities, the reason being that there are not many RTs between groups which have such different opinions.  

There are other two communities in the video (light blue and green) which correspond to news media and, a bot network automatically tweeting about the general strike.

The animation itself was created entirely with R using the igraph package, and encoded to video using ffmpeg. You can create similar videos yourself for other dynamic political discussions on Twitter: Esteban has kindly provided a tutorial on how to create such animations, with R code. 

Implicit None: Temporal network of information diffusion in Twitter

 
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

crypto marketing
How a Crypto Marketing Agency Can Use AI to Create Powerful Native Advertising Strategies
Blockchain Exclusive Marketing
data driven insights
How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
Analytics Big Data Exclusive
image fx (37)
Boosting SMS Marketing Efficiency with AI Automation
Exclusive
pexels pavel danilyuk 8112119
Data Analytics Is Revolutionizing Medical Credentialing
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
AnalyticsBusiness IntelligenceData Visualization

Situational Intelligence: Not Just Another Fancy Term

7 Min Read

A Deep Dive in Big Data

7 Min Read

Tableau Thrives in Providing Visual Discovery for Business Analytics

9 Min Read

Business Discovery Apps: Data Visualization Plus

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?