Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Political Revolutions on Twitter, Visualized with R
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Visualization > Political Revolutions on Twitter, Visualized with R
Data VisualizationR Programming Language

Political Revolutions on Twitter, Visualized with R

DavidMSmith
DavidMSmith
3 Min Read
SHARE

Twitter has become a powerful medium for organizing and communicating with factions during popular uprisings: the crisis in Egypt, the uprising in Syria, the revolution in Iran, and other conflicts all around the world.

Twitter has become a powerful medium for organizing and communicating with factions during popular uprisings: the crisis in Egypt, the uprising in Syria, the revolution in Iran, and other conflicts all around the world. Twitter’s effectiveness relies on its ability for the various factions to self-organize and to fight the information battle in social media.

Esteban Moro Egido, a mathematics professor at Universidad Carlos III in Madrid, puts this battle into stark relief with a video depicting Twitter activity around Spain’s general strike in March this year. Esteban has used the R language for years to understand complex networks with applications in areas such as telecommunications and social media, and has put those skills to great use analyzing all of the tweets, retweets and mentions related to the strike. Here’s the video:

 

More Read

Image
Assisted Insight: The Future of Data Discovery
The R Ecosystem: a Presentation
Creating Beautiful Maps with R
McLaren Shows The Way — Telemetry For Your Business?
The Anachronism Machine: The Language of Downton Abbey

Each point in the animation represents a twitter user, each colour-coded according to their faction in the debate (pro-strike, anti-strike, or somewhere in between). He used community-finiding algorithms to automatically assign Twitter users to factions, and Esteban described the factions in an email:

The communities where identified using one of the community-finding algorithms in R. Specifically the walk trap algorithm run over the static graph of (weighted) RT graph between twitter accounts. So each Twitter account is assigned to a particular community right from the beginning. 

What we did afterwards was to check what these communities were talking about (tweets and RTs). We found that the tweets and RTs in the orange community were in favor of the general strike and the reasons behind it, while the tweets and RTs in the dark blue community were against the unions and the reasons behind the general strike. It is interesting to see that the communities found in the structural analysis of the RT graph also correspond to opinion communities, the reason being that there are not many RTs between groups which have such different opinions.  

There are other two communities in the video (light blue and green) which correspond to news media and, a bot network automatically tweeting about the general strike.

The animation itself was created entirely with R using the igraph package, and encoded to video using ffmpeg. You can create similar videos yourself for other dynamic political discussions on Twitter: Esteban has kindly provided a tutorial on how to create such animations, with R code. 

Implicit None: Temporal network of information diffusion in Twitter

 
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News
edge networks in manufacturing
Edge Infrastructure Strategies for Data-Driven Manufacturers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

How to Speak Like a Data Scientist

5 Min Read

The Data Analytics of Super Tuesday

5 Min Read

Master Data Management: Does an Effective Solution Exist?

3 Min Read

Overcoming Data Management Challenges in Online Channel

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?