By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data-driven white label SEO
    Does Data Mining Really Help with White Label SEO?
    7 Min Read
    marketing analytics for hardware vendors
    IT Hardware Startups Turn to Data Analytics for Market Research
    9 Min Read
    big data and digital signage
    The Power of Big Data and Analytics in Digital Signage
    5 Min Read
    data analytics investing
    Data Analytics Boosts ROI of Investment Trusts
    9 Min Read
    football data collection and analytics
    Unleashing Victory: How Data Collection Is Revolutionizing Football Performance Analysis!
    4 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: With PMML, interoperability is truly attainable
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > With PMML, interoperability is truly attainable
Data Mining

With PMML, interoperability is truly attainable

MichaelZeller
Last updated: 2011/01/17 at 8:53 PM
MichaelZeller
4 Min Read
SHARE

Developed by the Data Mining Group (DMG), an independent, vendor led committee, PMML provides an open standard for representing data mining models. In this way, models can easily be shared between different applications avoiding proprietary issues and incompatibilities. Currently, all major commercial and open source data mining tools already support PMML. These include IBM/SPSS, SAS, KXEN, TIBCO, STATISTICA, Microstrategy, R, KNIME, and RapidMiner (for a list of PMML-compliant tools, see of PMML-powered tools at DMG.org).

Developed by the Data Mining Group (DMG), an independent, vendor led committee, PMML provides an open standard for representing data mining models. In this way, models can easily be shared between different applications avoiding proprietary issues and incompatibilities. Currently, all major commercial and open source data mining tools already support PMML. These include IBM/SPSS, SAS, KXEN, TIBCO, STATISTICA, Microstrategy, R, KNIME, and RapidMiner (for a list of PMML-compliant tools, see of PMML-powered tools at DMG.org).

PMML is an XML-based language which follows a very intuitive structure to describe data pre- and post-processing as well as predictive algorithms. Not only does PMML represent a wide range of statistical techniques, but it can also be used to represent input data as well as the data transformations necessary to transform raw data into meaningful features.

As part of the Data Mining Group, Zementis is committed to the continual development of PMML. It is our vision for the community that users will be free to share models among many solutions, benefiting from an environment in which interoperability is truly attainable.

More Read

Examining PMML 4.0 – Part I: Pre-Processing

In this spirit, Zementis has made available a tool called the PMML Converter which converts older versions of PMML to its latest, Version 4.0. The converter is also used to validate a data mining model against the PMML specification for versions 2.0, 2.1, 3.0, 3.1, 3.2, and 4.0. If validation is not successful, the converter gives back a file containing explanations for why the validation failed (click on the “details” button).

Before actual conversion takes place, the validation phase needs to be successful, i.e. the model file needs to conform to the PMML specification as published by the DMG (for any of the older PMML versions listed above). For known PMML issues (from a variety of sources/vendors), the PMML Converter will actually correct the model file so that it can be converted appropriately.

The PMML converter currently converts the following model elements to PMML 4.0:

  • Association Rules
  • Clustering Models
  • Decision Trees
  • General Regression Models Regression
  • Naive Bayes Classifiers
  • Neural Networks Regression Models
  • Ruleset Models
  • Support Vector Machines

It will also convert pre- and post-processing PMML elements.

The PMML Converter can be accessed directly from the Data Mining Group (DMG) website or it can be found in the Zementis PMML Resources page.

For more information on how to use the converter, please refer to the how-to guide.

TAGGED: data mining models
MichaelZeller January 17, 2011
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sobm for ai-driven cybersecurity
Software Bill of Materials is Crucial for AI-Driven Cybersecurity
Security
IT budgeting for data-driven companies
IT Budgeting Practices for Data-Driven Companies
IT
machine,translation
Translating Artificial Intelligence: Learning to Speak Global Languages
Artificial Intelligence
data science upskilling
Upskilling for Emerging Industries Affected by Data Science
Big Data

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

Examining PMML 4.0 – Part I: Pre-Processing

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?