Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Parallel Processing in R for Windows
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > R Programming Language > Parallel Processing in R for Windows
R Programming Language

Parallel Processing in R for Windows

DavidMSmith
DavidMSmith
3 Min Read
SHARE

The doSMP package (and its companion package, revoIPC), previously bundled only with Revolution R, is now available on CRAN for use with open-source R under the GPL2 license.

The doSMP package (and its companion package, revoIPC), previously bundled only with Revolution R, is now available on CRAN for use with open-source R under the GPL2 license.

In short, doSMP makes it easy to do SMP parallel processing on a Windows box with multiple processors. (It works on Mac and Linux too, but it’s been relatively easy to do parallel processing on those systems for a while with doMC/multicore package combo. Windows, not so much.) Basically, you tell it how many processors you have, write a loop using the foreach function, and the iterations of the loop run in parallel, using multiple processors. For embarassingly parallel problems like simulations and optimizations and such, if you have 2 processors you can get close to halving the processing time; reduce it to near 25% with 4 processors, and so on. (Whether these are true, independent CPUs or cores within a processor matters a little, but not much.)

More Read

analytics
Revolution Analytics CEO: Big Data Is a New Management Discipline
Simple Tools for Building a Recommendation Engine
Alpha Testing RevoScaleR Running in Hadoop
Paul Murrell on Incorporating Images in R Charts
Sentiment Analysis for Airlines via Twitter

You can see some examples in the doSMP vignette, from which I adapted the following example. Suppose you want to bootstrap parameter estimates from a logistic regression using 1000 samples:

x <- iris[which(iris[, 5] != "setosa"), c(1, 5)]
trials <- 10000
chunkSize <- ceiling(trials/getDoParWorkers())
smpopts <- list(chunkSize = chunkSize)
r <- foreach(icount(trials), .combine = cbind, .options.smp = smpopts)
  %dopar% {
  ind <- sample(100, 100, replace = TRUE)
  result1 <- glm(x[ind, 2] ~ x[ind, 1], family = binomial(logit))
  coefficients(result1)
}

Created by Pretty R at inside-R.org

Note the use of foreach to run the bootstrap models in parallel. On a 4-core machine, you could reduce processing time from 104 seconds to 57 seconds compared to using a regular for loop. Not quite a fourfold reduction, but a significant reduction in time nonetheless. (Tip: if you’re using Revolution R, you might want to try turning off MKL multithreading when using doSMP/foreach, to avoid contention between the small-grain threading of MKL, and the large-grain parallelism of foreach.)

I’ve written about foreach several times before (here, here and here for example) using other parallel backends like doMC and doSNOW. Now you can use those same examples on Windows with open-source R and the doSMP package.

doSMP package: Getting Started with doSMP and foreach

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive
qr codes for data-driven marketing
Role of QR Codes in Data-Driven Marketing
Big Data Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Big Data: Will Open Source Software Challenge BI & Analytics Software Vendors

3 Min Read
Next Generation Programming Language for Big Data
Big DataComputingExclusiveITR Programming Language

Is R the Next Generation Programming Language for Big Data?

8 Min Read

An Analysis of the R-help Mailing List

3 Min Read
Image
HadoopR Programming LanguageSoftware

Putting the R in Cloudera and Hortonworks Hadoop

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?