By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    Promising Benefits of Predictive Analytics in Asset Management
    11 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: The NSA, Link Analysis and Fraud Detection
Share
Notification Show More
Latest News
ai in marketing with 3D rendering
Marketers Use AI to Take Advantage of 3D Rendering
Artificial Intelligence
How Big Data Is Transforming the Maritime Industry
How Big Data Is Transforming the Maritime Industry
Big Data
ai digital marketing tools
Top Five AI-Driven Digital Marketing Tools in 2023
Artificial Intelligence
ai-generated content
Is AI-Generated Content a Net Positive for Businesses?
Artificial Intelligence
predictive analytics in dropshipping
Predictive Analytics Helps New Dropshipping Businesses Thrive
Predictive Analytics
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > The NSA, Link Analysis and Fraud Detection
AnalyticsBig DataData ManagementData MiningPolicy and GovernancePredictive AnalyticsPrivacyTransparency

The NSA, Link Analysis and Fraud Detection

DeanAbbott
Last updated: 2013/07/25 at 8:00 AM
DeanAbbott
5 Min Read
Image
SHARE
ImageThe recent leaks about the NSA’s use data mining and predictive analytics has certainly raised awareness of our field and has resulte

ImageThe recent leaks about the NSA’s use data mining and predictive analytics has certainly raised awareness of our field and has resulted in hours of discussions with family, relatives, friends and reporters about what predictive analytics can (and can’t) do with phone records, emails, chat messages, and other structured and unstructured data. Eric Siegel and I have been interviewed on multiple occasions to address this issue from a Predictive Analytics perspective, and in case, in the same article: “What the NSA can’t do with your data (probably)”. Part of my goal in these conversations has been to bring back to reality many of the inflated expectations of what can be done with predictive analytics: predictive analytics is a powerful approach to finding patterns in data, but it isn’t magic, nor is it fool-proof.
First, let me be clear: I have no direct knowledge of the analytics the NSA is doing. I have worked on many fraud detection projects for the U.S. Government and private sector, some including what I would describe as a “social networking” component to them where the connections between parties is an important part of the risk factors.
The phone call meta data shows simple information about each phone call: origination, destination, date of the call, duration, and perhaps some geographic information about the origination and destination. One of the valuable aspects of the data is that connections can be made between origination and destination numbers, and as a results, one can build social networks of every origination phone number in the data. The U.S. has more than 326.4 millions cell phones subscriptions as of December 2012 according to CTIA. The Pew Research survey found that individual cell phone users had on average 664 social connections (not all of which are cell connections). The number of links needed to build a U.S.-wide social map of phone call connections easily outstrips any possible visualization method, and therefore, without filtering connections and networks, these social maps would be useless. One of the factors working in our favor, if we are concerned with privacy issues related to this meta data, is therefore the sheer size of the network.
The networks of phone calls, I believe, are particularly useful in connecting high-risk individuals with others whom the NSA may not know beforehand are connected to the person of interest. In other words, a starting point is needed first and the social network is built from this starting point. If one has multiple starting points, one can also find linkages between networks even if the networks themselves don’t overlap significantly.
The strength of a link can include information such as number of calls, duration of calls, regularity of calls, most recent call, oldest call, and more. Think of these are a cell-phone version of RFM analysis. The networks can be pruned easily based on thresholds for these key features, simplifying the networks considerably.
But even if the connections are made, this data is woefully incomplete on its own. First, there is no connection to the person who actually made the call, only the phone number and who it is registered to. Finding who made the calls requires more investigation. Second, it doesn’t necessarily connect all the phones an individual might use. If a person uses 5 or 6 cell phones, one doesn’t know that the same person is behind these phone numbers. Third, one certainly doesn’t know the intent or content of the call.
Given these limitations, what value is there to the network of calls? These networks are usually best used as lead-generation engines. Which other phone numbers in a network are connected to multiple high-risk individuals (but weren’t here-to-fore considered high risk)? Is the timeline of calls temporally correlated with other known events?
Analytics, and link analysis in particular, provide tremendously powerful techniques to identify new leads and remove unfruitful leads by finding connections unlikely to occur randomly.
image: privacy/shutterstock

TAGGED: fraud, NSA Prism
DeanAbbott July 25, 2013
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai in marketing with 3D rendering
Marketers Use AI to Take Advantage of 3D Rendering
Artificial Intelligence
How Big Data Is Transforming the Maritime Industry
How Big Data Is Transforming the Maritime Industry
Big Data
ai digital marketing tools
Top Five AI-Driven Digital Marketing Tools in 2023
Artificial Intelligence
ai-generated content
Is AI-Generated Content a Net Positive for Businesses?
Artificial Intelligence

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form id=”1616″]

You Might also Like

Top 10 Ways to Apply Predictive Analytics in the Insurance Industry — and Your Industry?

2 Min Read

Predictive Analytics World Addresses Risk and Fraud Detection

3 Min Read

PAW: High-Performance Scoring of Healthcare Data

6 Min Read

PAW: The High ROI of Data Mining for Innovative Organizations

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?