Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: NICE Systems Engages Analytics to Optimize Customer Experience
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > NICE Systems Engages Analytics to Optimize Customer Experience
Uncategorized

NICE Systems Engages Analytics to Optimize Customer Experience

RichardSnow
RichardSnow
7 Min Read
SHARE

NICE Systems is an established vendor of workforce optimization products that has long included analytics in its portfolio. Its latest release in this area, NICE Customer Experience Analytics, focuses on mapping, understanding and managing customer journeys and metrics.

NICE Systems is an established vendor of workforce optimization products that has long included analytics in its portfolio. Its latest release in this area, NICE Customer Experience Analytics, focuses on mapping, understanding and managing customer journeys and metrics. The product is built on NICE’s common technology platform, which consists of three functions: collect, understand and optimize. The Collect segment has tools to help manage customer-related data and ingest data from multiple data sources; Understand uses analytics tools to analysis the data and produce reports, dashboards and other forms of output; and Optimize uses the outputs to help users improve business tasks such as improve customer satisfaction and net performer scores, suggest next best actions and reduce customer effort.

I have written that the proliferation of systems and channels of interaction creates major problems for organizations in dealing with the volume and variety of data they have to process to create a complete analysis of customers. Our benchmark research into next-generation customer analytics vr_Customer_Analytics_05_dissatisfaction_with_customer_analyticsshows the extent of the problem; organizations most often cited issues in availability of data (63%), lack of skills (49%) and lack of flexibility (40%). In 2012, NICE announced a partnership with IBM to use its big data analytics software, including InfoSphere BigInsights, and this remains the basis for its Collect segment. It provides capabilities to process all forms of customer-related data, including interactions and transactional data in both structured and unstructured forms, and to produce two forms of analysis – voice of the customer and interaction analytics. However, our benchmark research uncovers an even bigger issue, that of linking customer identifiers so companies can tie interactions from different channels to a specific customer to discover, for example, that an email message from one address is from the same customer as a phone call from a certain number. One of the key differentiators of NICE Customer Engagement Analytics is that the Collect platform includes an independent database and over time extracts identifiers from different systems and stores them in a common customer record, thus allowing linkage of interactions and transactional data. It can do this using current data, or if a new identifier is added, it can go back and tie all previous interactions from that channel to that identifier, thus updating the customer view.

The Understand layer of this product has a collection of tools that analyze the data in different ways, visualizes the outputs in different forms, and creates triggers and alerts to ensure action is taken. It includes NICE’s speech and text analytics products that can derive insight from call or text-based data; these tools combine data to help users understand why customers engage with the organization. It also has a tool that visualizes customer journeys from one channel to another. It includes capabilities to analyze journeys and flag alerts on the resulting maps to show, for example, that a certain type of interaction often results in an undesirable business outcome. There is a predictive modeling tool that uses historical data to predict possible outcomes such as potential defectors. A pair of tools create actions that are required to happen in real time and recommend next best action based on the customer’s profile and data collected during an interaction; for example, it can advise a contact center agent on a possible upsell opportunity during a conversation.

More Read

The #1 job of every CIO
Clustering the thoughts of Twitter Users
6 Tips for Being an Awesome Data Scientist
Expressor pre-announces a data loading benchmark leapfrog
The Senate, ObamaCare, the NYT, and R

The output from these tools is used as input to the Optimize layer. This can be done in two ways. When the required action involves the use of a non-NICE system, that is flagged in a report, analysis or alert. For actions that involve other NICE products they can be automated by sending data or a transaction directly to that system. This has the advantage of “closing the loop” and ensuring that issues identified through NICE Customer Experience Analytics actually are taken; for example, a training session could be inserted into a contact center agent’s schedule. The product is modular so organizations typically choose a key business issue first and adopt just the modules needed to solve it. The product is offered in the cloud as software as a service, so it is easy to select just the required modules and deliver the outputs where they are needed.

I recently wrote that, although it is not easy to achieve, it is essential for organizations to “know” their customers so they can optimize business with them. For me the key is that the more data that is analyzed, the more complete the picture becomes, potentially leading to better decisions and actions. NICE Engagement Analytics facilitates this because it can ingest all forms of data, and its identification management capabilities can tie interactions, and thus customer journeys, together. The system is designed to ensure actions are taken, and the focus is on key business targets. Our next-generation customer analytics research shows that many companies use spreadsheets to try to reach this goal. However, these personal productivity tools simply cannot deal with the complexity of customer engagement. I recommend that companies assess how NICE Engagement Analytics can help them improve the customer experience and business outcomes.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

People, Process & Politics: Integration Competency Centers

8 Min Read

Who Drives Software Innovation? The “Best-of-Breed vs. Giants” Debate

3 Min Read

FYI: Dashboard using SAS/Graph

2 Min Read

What Data Governance leaders have in common around the world

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?