By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data-driven white label SEO
    Does Data Mining Really Help with White Label SEO?
    7 Min Read
    marketing analytics for hardware vendors
    IT Hardware Startups Turn to Data Analytics for Market Research
    9 Min Read
    big data and digital signage
    The Power of Big Data and Analytics in Digital Signage
    5 Min Read
    data analytics investing
    Data Analytics Boosts ROI of Investment Trusts
    9 Min Read
    football data collection and analytics
    Unleashing Victory: How Data Collection Is Revolutionizing Football Performance Analysis!
    4 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Look, Ma. No ETL
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Look, Ma. No ETL
Uncategorized

Look, Ma. No ETL

TedCuzzillo
Last updated: 2010/07/13 at 8:05 AM
TedCuzzillo
4 Min Read
SHARE

One of the first things you learn about in business intelligence is ETL. Raw data gets harvested, washed and served. But Sandy Steier hadn’t heard.

Sandy had been busy analyzing data. For years on Wall Street, he pored over mortgage-backed securities with a tool he and peers developed for themselves.

One of the first things you learn about in business intelligence is ETL. Raw data gets harvested, washed and served. But Sandy Steier hadn’t heard.

More Read

etl for data-driven businesses

Understanding ETL Tools as a Data-Centric Organization

Maximizing the Business Value of Big Data
Estimating Extract, Transform, and Load (ETL) Projects
ETL Checkpoints
5 Simple Tidbits to Include in Your Data Error Report

Sandy had been busy analyzing data. For years on Wall Street, he pored over mortgage-backed securities with a tool he and peers developed for themselves.

He only learned of ETL recently. He’d become acquainted with a data architect with whom he shared a bus ride every day to and from their offices in downtown Manhattan. “I had never really spoken to him before,” Sandy recalls. “He was in a different world even though we both dealt with data.”

Sandy described to him his rapidly maturing tool. As I imagine the scene, the calm data architect suddenly twisted himself on the cramped bus seat to face Sandy. “You don’t do ETL? You work with raw data??”

No, he didn’t do any ETL, Sandy explained. “We didn’t realize how important that was,” he recalled. “We had always just stuck the raw data into the database and then realized, ‘Hey, this data’s a mess.’” He instructed users to clean it themselves. “You get the data from the horse’s mouth. You’re the expert. We didn’t realize how powerful this was.”

In Sandy’s system, you don’t worry about database design. He and his partners not only didn’t worry about ETL, they wondered how data analysis could not be done their way — import first, clean later. “It makes good sense if you can get away with it.”

A crucial factor that lets the tool work as it does is speed. It allows the 1010Data engine to calculate and recalculate repeatedly. The summaries that cubes harbor for anticipated queries are no longer necessary. Parallel processing with a columnar database runs fast enough. In place of ETL, he uses what he now calls “ELTAR,” for extract, load, and transform as required.

A hurdle, he says, is conventional beliefs held by his sales prospects. In one phone call recently, he explained to a prospect that ETL was unnecessary. The man replied, “That’s not credible.” In fine sales form, Sandy said, “Then you’ll be impressed when I prove it to you.” The prospect replied more firmly, “You don’t understand. That’s not credible.”

Actually, the technology’s credibility doesn’t matter much. The company, 1010Data, offers reporting and analytics on the cloud — invisible to customers except for the results. Sandy says, “We could have monkeys writing on scratchpads.” To those willing to try, he offers to prove it with the prospect’s own data.

Their technology’s speed allows them to do the work of dozens with a team of a few people, he says, and to finish large data warehouse projects in weeks that would otherwise take months or years. If multiple customers use the same data, such as stock market data, the time required is even less.

All without ETL.

TAGGED: etl
TedCuzzillo July 13, 2010
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

big data and IP laws
Big Data & AI In Collision Course With IP Laws – A Complete Guide
Big Data
ai in marketing
4 Ways AI Can Enhance Your Marketing Strategies
Marketing
sobm for ai-driven cybersecurity
Software Bill of Materials is Crucial for AI-Driven Cybersecurity
Security
IT budgeting for data-driven companies
IT Budgeting Practices for Data-Driven Companies
IT

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

etl for data-driven businesses
Big Data

Understanding ETL Tools as a Data-Centric Organization

8 Min Read

Maximizing the Business Value of Big Data

11 Min Read

Estimating Extract, Transform, and Load (ETL) Projects

20 Min Read

ETL Checkpoints

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?