By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Interactive Analysis and Related Tools – Part II
Share
Notification Show More
Latest News
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
ai in omnichannel marketing
AI is Driving Huge Changes in Omnichannel Marketing
Artificial Intelligence
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Interactive Analysis and Related Tools – Part II
Business IntelligencePredictive Analytics

Interactive Analysis and Related Tools – Part II

raqsoft
Last updated: 2012/08/24 at 9:27 AM
raqsoft
4 Min Read
SHARE

In my last article, I have talk about interactive analysis from the definition and explains with an example, and today we will discuss the characteristics of interactive analytics.

In my last article, I have talk about interactive analysis from the definition and explains with an example, and today we will discuss the characteristics of interactive analytics.

As we can see from the above examples, the real world business data analysis is far more complex than the theory. The commercial opportunity changes unpredictably and comes and goes in a moment of doze. In fact, the computation on the business activities is usually fuzzy. There are few model algorithms from textbook that can be used to solve the real business situation. The interactive analysis computation is to solve the problem in the real world. Business intelligence tools should be more simple, and most importantly, interactive analysis should be simplied. Let’s check the characteristics of interactive analysis.

Fixed algorithm as bottom layer

More Read

SMEs Use AI-Driven Financial Software for Greater Efficiency

Key Strategies to Develop AI Software Cost-Effectively
AI is Driving Huge Changes in Omnichannel Marketing
Maximize Tax Deductions as a Business Owner with AI
Marketers Use AI to Take Advantage of 3D Rendering

Interactive analysis can be always resolved to the fixed algorithm. For example, ranking algorithm is usually used to compute the “Appearance of Large Order”; grouping algorithm is usually used to compute the “which sector sees the intensive procurement by clients”.

Focus on the interactive procedure

The bottom layer of interactive analysis is the fixed algorithm though, the human intervention is necessary. How to break down the target? How to set the priority of branches? Whether to carry on the mining or not? Is the existing result enough to support the decision-making? Is the further computation necessary? Theoretically speaking, the power enough computer programs can implement the above network-like branches, and thus turn it into the fixed algorithm. However, before the The Matrix and Neo born, the analyzers will have to take great effort in it.

Focus on the business expert

Interactive analysis is to solve the problem in the real world. The assumption will have to make on the basis of business status, and the next step computation will be decided on the current data and business experiences. To do this, the abundant business knowledge is required. The qualified analyzer is usually the business expert. The database administer and programmer are more fit to seek the solutions to the fixed algorithm and they are able to provide the assistance in computation but hard to make the most important business decision.

Take massive structured data as the primary goal

The massive structured data is the data capable to be represented with a 2-dimention structure. Of the massive structural data, the typical examples are the data from database and spreadsheet, and text file. In the business activities of real world, these data are the most common and fundamental, acting as the base of business calculation.

This is the End of Part II for interactive analysis. In the next part, I will talk about the related tools for interactive analysis.

To be continued…

 

Related Reading

Interactive Analysis and Related Tools – Part I

raqsoft August 24, 2012
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

Artificial Intelligence

SMEs Use AI-Driven Financial Software for Greater Efficiency

10 Min Read
ai software development
Artificial Intelligence

Key Strategies to Develop AI Software Cost-Effectively

10 Min Read
ai in omnichannel marketing
Artificial Intelligence

AI is Driving Huge Changes in Omnichannel Marketing

12 Min Read
ai for small business tax planning
Artificial Intelligence

Maximize Tax Deductions as a Business Owner with AI

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?