Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: How to Define Big Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > How to Define Big Data
Uncategorized

How to Define Big Data

Brett Stupakevich
Brett Stupakevich
3 Min Read
SHARE

Lumiere et optique photo (information management big data )“Big data” is a popular term these days – it seems to pop up everywhere. But do people mean the same thing when they say those words?

Lumiere et optique photo (information management big data )“Big data” is a popular term these days – it seems to pop up everywhere. But do people mean the same thing when they say those words?

In The Big Data Management Challenge, a recent report from Information Week, Michael Biddick provides a very useful description of what constitutes big data. He suggests there are four elements needed for data to qualify as “big.”

More Read

Please take my privacy poll
Using Business Rules to Make Processes Smarter, Simpler and More Agile
ETL, Data Quality and MDM for Mid-sized Business
IT Security: The Good, the Bad & The Ugly [INFOGRAPHIC]
Coconuts and seeded grapes
  • The most obvious is size. A good point of demarcation is around 30 terabytes.
  • Next is type. Structured data can be easy to work with even in very large amounts, whereas multiple data types (for example, structured, unstructured, plus semi-structured) can be challenging even when data sets are smaller.
  • One of the most challenging elements is latency. “Really big” data typically changes fast.
  • Finally, there’s complexity. Complex data may involve sparseness, inconsistency, and other atypical qualities.

Recognizing big data is the first step to managing it successfully – and the second step is establishing a management strategy specifically designed for big data.

But according to the Information Week survey (drawing on 231 IT professionals from organizations with 10 terabytes or more of data), only 33% of respondents could answer “yes” to this question: Does your organization distinguish “data” from “big data,” using distinct tools and management approaches for higher volume, complexity and dynamic data processing?” Fifty-six percent of respondents say “no,” and 11% admit they don’t know.

From that perspective, it’s no surprise to find that only 6% of the survey participants say there were “no barriers” to the successful management of big data at their organizations.

The highest percentage identify “budget constraints” as a major barrier, but many also cite problems of limited awareness and capability within their organizations. “Lack of knowledge of big data tool implementation” is cited by 44% of respondents, “cost and availability of training” by 41%, and “lack of expertise or experience” by 34%.

Perhaps the most interesting insight can be derived from the way the respondents rate their own understanding of big data tools and strategies.

The 231 professionals range from IT director/manager level (33%) and IT/IS staff (38%) to IT execs (9%) as well as a few business executives, non-IT managers, and consultants. Only 8%, however, say they have “ample knowledge” of technologies specifically designed to manage the needs of big data. Most of the survey participants – 63% – describe themselves as “somewhat familiar” with big data technologies, while 25% are “not very familiar.”

All in all, it seems there’s plenty of room in most companies for improvements in the understanding of big data and the implementation of appropriate management strategies.


 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive
data science importance of flexibility
Why Flexibility Defines the Future of Data Science
Big Data Exclusive
payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

10 Ways to Enhance Your Email Program

8 Min Read

Do it and then do it better: an iterative mindset

10 Min Read

Sybase PowerDesigner & The Zachman Framework: First Zachman Certified Enterprise Tool?

4 Min Read

Inbox Filtering

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?