Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Avoid Screwing Up Predictive Analytic Projects
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Decision Management > Avoid Screwing Up Predictive Analytic Projects
Business IntelligenceDecision Management

Avoid Screwing Up Predictive Analytic Projects

JamesTaylor
JamesTaylor
5 Min Read
SHARE

There’s a great article over on Computerworld – 12 predictive analytics screw-ups.

There’s a great article over on Computerworld – 12 predictive analytics screw-ups. They asked some of my favorite data miners (John Elder and Jeff Deal of Elder Research, Eric Siegel of Prediction Impact and Dean Abbott of Abbott Analytics) what they saw as the top ways to screw up predictive analytic projects. The list of 12 is great – every one is worth committing to memory. What I want to do though is point out an effective way to avoid not one, not two but five of these problems – Decision Modeling.

Tutorial4FinalDiagramIn a decision model like the one shown to the right (based on the emerging standard for Decision Model and Notation and built using our modeling tool, DecisionsFirst Modeler) you specify how a decision will be made precisely by decomposing it into its component decisions (rectangles), you show how this decision making consumes information (ovals) and you show where the knowledge required to make a decision comes from (documents). This knowledge might be policy-based, expertise or analytically derived. Because the purpose of an analytic is to improve decision making, any analytic project can develop such a model to describe which decision(s) will be improved and where the analytic fits in this. There’s more on how to do this in our white paper.

Using Decision Modeling to describe the business requirements for a predictive analytic project helps address 5 of the 12 screw ups. Starting in best Letterman style with the end of the list:

More Read

Clementine is dead, long live PASW Modeller
Kranzberg’s Six Laws of Technology
Business Intelligence (BI) Index: Weekly Update 06-26-2009
As we witness our society racing ahead with…
Automated Valuation Models

12. Don’t define clearly and precisely within the business context what the models are supposed to be doing.
As Dean Abbott said “Too many people are just trying to build good models but have no idea how the model actually will be used.” A decision model clearly defines the business context for the model – the business decision making that the model is designed to influence along with all the other influences on the decision-making.

10. If you build it they will come: Don’t worry about how to serve it up.
Decision Models make it clear how the model affects business decision making but they can also be linked to the business processes, business events and information systems that need to make those decisions. We find that once someone has a decision model it is much easier to see where that decision (and thus the analytic) will be used. From this an effective deployment strategy can be developed.

8. Ignore the subject matter experts when building your model.
Decision models help with this by modeling how expertise (and regulations, policies) matters to decision-making so it is clear what other influences there will be. By breaking down the decision-making formally into a model you can also manage the organizational relationships involved. In DecisionsFirst Modeler, for instance, we let you record which organizational unit owns each part of the decision-making, which ones make each decision and which other ones might care. This let’s you see clearly who cares about which model and why.

3. Don’t proceed until your data is the best it can be.
I often find companies that tell me they can’t do any analytics because their data is not perfectly ready. However the quality of data you need is driven in large part by the decision you are trying to influence. If the people making the decision are currently guessing then your data only has to be good enough to support a model that gives you a 60/40 prediction to be useful. If on the other hand you are already making a very precise decision then your data will have to be proportionally better.

1. Begin without the end in mind.
Or as I like to say “Begin with the decision in mind.” The value of predictive analytics comes from improving decision-making. Begin by focusing on the decision you wish to improve and use that to drive your predictive analytic projects.

Decision modeling has a lot to offer analytic projects so why not read our white paper on Decision Requirements Modeling for Analytic Projects or contact us to learn about Decision Management for Predictive Analytics Projects.

P.S. It works for BI projects too….

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

AI technology in fintech
Fintech

AI Technology Helps Consumers Improve Access to Financial Capital During Current Recession

6 Min Read

Best One-on-One Conversations of 2011: Social CRM, Entrepreneurship and Connecting with Real Influencers

12 Min Read

BI Challengers: Disrupting the Mega Vendor?

6 Min Read

Patient-Centered Data-Driven Care: Carolina Advanced Health

0 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?