Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Is Hadoop Knowledge a Must-Have for Today’s Big Data Scientist?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Software > Hadoop > Is Hadoop Knowledge a Must-Have for Today’s Big Data Scientist?
AnalyticsBig DataHadoopMapReduce

Is Hadoop Knowledge a Must-Have for Today’s Big Data Scientist?

Farnaz Erfan
Farnaz Erfan
3 Min Read
big data scientist skills
SHARE

Finding data scientists and other highly technical resources that understand the complexity of big data is one of the most common roadblocks to getting value from big data. Typically, these resources need to understand Hadoop and new programming methods to read, manipulate and model big data.

As big data analytics tools advance, addressing these technologies will become less difficult, so big data scientists must master additional skills.

To make a real business impact, data scientists must have:

Finding data scientists and other highly technical resources that understand the complexity of big data is one of the most common roadblocks to getting value from big data. Typically, these resources need to understand Hadoop and new programming methods to read, manipulate and model big data.

More Read

Supply Chain Business Intelligence Is More Than Just Technology
Many Kinds of Analytics, One Approach to Maximize Their Value
ggplot2 and the grammar of graphics
“Unlike some of the other technological evolutions, Cloud Computing is actually a paradigm shift from…”
What You Need to Know About Latency Before the Holiday Season

As big data analytics tools advance, addressing these technologies will become less difficult, so big data scientists must master additional skills.

To make a real business impact, data scientists must have:

big data scientist skills1. Innate analytical skills
They must have a natural curiosity for experimenting with data and often begin analysis without a clear picture of the end goal. This is a different paradigm than solving a specific, identified problem through coding or by running a query.

2. Business finesse
Sexy dashboards ultimately fail if a business doesn’t act on what the data is indicating. To succeed, data scientists must know how to translate the impact of their insights to the business.

3. Collaboration skills
Teamwork and the ability to collaborate across an organization separate those who use data to drive change from those who merely build interesting algorithms.

Big data advancements have brought technologies such as Hadoop to democratize big data to all. However, individuals skilled at data manipulation and programming in Hadoop remain scarce. Fortunately, new, innovative and easy to use big data discovery applications have broaden big data access to those without much technical skills.

So the question is: Will these new types of discovery applications for big data demand a different kind of data scientist going forward – one with analytical, interpersonal and business skills? Or would in-depth understanding of emerging technologies such as Hadoop continue to be the most important skills in ‘data scientists’?

TAGGED:big data sciencebusiness intelligencedata discoverydata management
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

IoT Security
Internet of Things

IoT Security: What Kind of Data Is Compromised by Poorly Protected IoT Devices?

6 Min Read

How well are you protecting your enterprise content?

2 Min Read

Top 14 Benefits of Business Intelligence – Part II

0 Min Read

Business Intelligence – The Power of Human Emotion

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?