Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Google and Apache Hadoop: A Match Made in the Cloud
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > IT > Cloud Computing > Google and Apache Hadoop: A Match Made in the Cloud
Big DataCloud ComputingData MiningData WarehousingHadoopITMapReduceOpen SourceSoftwareWorkforce Data

Google and Apache Hadoop: A Match Made in the Cloud

MicheleNemschoff
MicheleNemschoff
4 Min Read
Image
SHARE

ImageTo the uninitiated, words like “Google” and “Hadoop” sound like the stuff of a futuristic make-believe world. Being that the MapReduce paper published by Google scientists Jeffrey Dean and Sanjay Ghemawat in 2004 inspired Hadoop, the coming together of Hadoop and Google is a match made in the cloud.

ImageTo the uninitiated, words like “Google” and “Hadoop” sound like the stuff of a futuristic make-believe world. Being that the MapReduce paper published by Google scientists Jeffrey Dean and Sanjay Ghemawat in 2004 inspired Hadoop, the coming together of Hadoop and Google is a match made in the cloud. And the partnership between MapR and Google to run MapR’s Enterprise Distribution for Hadoop on Google Compute Engine is anything but science fiction. Here’s a look at some of the major benefits of using Hadoop on Google Compute Engine.

Flexibility

Running Hadoop on Google Compute Engine leverages the power and efficiency of Google’s data centers to execute at scale and solve large problems. Utilizing the Google Cloud Platform, enterprises have the flexibility to expand or contract the cluster size on demand to provision precisely the amount of resources required to meet their data processing needs.

More Read

Image
How Can Big Data Influence Sports?
Is Big Data the Silver Bullet for Advanced Supply Chain Analytics?
How To Leverage Your Website Data To Generate More Customers
Big Data: CEO, CMO, Now for the CFO
Exciting Predictions For Where Big Data Analytics Are Headed By 2025

World-record speed and performance

With MapR’s Enterprise Distribution for Hadoop on Google Compute Engine, it’s possible to spin up well over a thousand servers in a matter of minutes and run scalable applications at blazing fast speeds. In fact, MapR ran Hadoop on the Google Compute Engine and set a world record for MinuteSort. MapR sorted 15 billion 100-byte records in only 60 seconds. It was done on 2,103 virtual instances, each consisting of four virtual cores and a virtual disk.

The Hadoop/Google virtualized cloud environment set the record using far fewer servers, disks and cores than Yahoo used in setting the prior record. To put it simply, Hadoop on Google Cloud Platform not only does more with less, it does so faster than the best and biggest on on-premise Big Data platforms. This type of performance allows enterprises to tackle large-scale workloads quickly and easily to gain greater business insights and competitive advantage to drive higher ROI.

Cost-effectiveness

According to MapR CEO John Schroeder, who discusses Hadoop and Google Compute Engine at Google I/O, the physical hardware that an enterprise would need to approximate what Yahoo used to achieve its 62-second benchmark would conservatively cost $6 million to acquire and several months to install. And those estimates, Schroeder explains, don’t even factor in the costs of all the electrical needed to handle the server load, not to mention the 50-75 tons of air conditioning that would be required to cool the data center. In contrast, Schroeder offers that the cost of running Hadoop on Google Compute Engine for the 54 seconds it took to set the new 1TB Terasort benchmark was a mere $16.

Utilizing Google as the cloud provider eliminates the need for enterprises to pay huge costs for on-premise servers that need to be switched out for newer models every 3 years and may never be used to full capacity. Enterprises only pay Google for the resources they use to meet their data processing demands. And the costs associated with running Enterprise Hadoop on Google Compute Engine are extremely reasonable compared to traditional infrastructure.  

In short, if you’re looking for a flexible, fast, and cost effective Big Data platform, MapR’s Hadoop distribution running on Google Compute Engine just might be the right solution for your business.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

On-Demand (or SaaS) Index: Trade or Trend?

7 Min Read
Image
AnalyticsBig DataBusiness IntelligenceData MiningDecision ManagementHadoopPredictive AnalyticsSentiment AnalyticsSocial Media AnalyticsText AnalyticsWorkforce AnalyticsWorkforce Data

Danger: 3 Reasons to Be Scared of Big Data

15 Min Read

Self-Promoters Score! Why Analysts Can’t be Shy Anymore

9 Min Read
data-driven SEO techniques
AnalyticsBest PracticesBig Data

4 Ways To Take Big Data And SEO To The Next Level

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?