Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Get an early start for on-time data modeling
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Visualization > Get an early start for on-time data modeling
Business IntelligenceData VisualizationModeling

Get an early start for on-time data modeling

boblambert12
boblambert12
4 Min Read
SHARE

I’m a data modeler, so I enjoyed Jonathon Geiger’s recent article entitled “Why Does Data Modeling Take So Long”.  But why does he say it like it is a bad thing?

I’m a data modeler, so I enjoyed Jonathon Geiger’s recent article entitled “Why Does Data Modeling Take So Long”.  But why does he say it like it is a bad thing?

Mr. Geiger’s bottom line is exactly right: “Most of the time spent developing data models is consumed developing or clarifying the requirements and business rules and ensuring that the data structure can be populated by the existing data sources.”  On the projects he describes, no one took time before modeling to determine available data sources and identify business entities of interest, relationships among them, and attributes that describe them before database design started, so the data modeler had to do it.

More Read

Image
Big Data Bubbles Up Trouble!
Video
Informatica: Establishing Order from Information Chaos
How Different Groups Spend Their Day – Interactive Graphic -…
How Does Data-Centricity Help Businesses Be More Customer-Centric?

Taking the second point first, we often think modeling takes a long time because we don’t recognize the need for conceptual data modeling in requirements. I’ve written that “using data modeling techniques in requirements analysis reduces errors by improving requirements completeness, consistency, and communication, and provides unique continuity between analysis and design.” The International Institute of Business Analysts (IIBA) must agree:  the Business Analysis Body of Knowledge (BABOK) lists data modeling among the tools available to requirements analysts.  Its purpose, according to the BABOK, is “to describe the concepts relevant to a domain, the relationships between those concepts, and information associated with them.”

For systems like data marts and warehouses that pull from existing source databases, investigation of current sources is a prerequisite of modeling.  Typically, some required data will not exist in source systems, and source data structures often contain inconsistencies and idiosyncrasies that modelers must understand before designing the database.  Mr. Geiger cites null values in a mandatory source field, a common problem in my experience.

However, there are two reasons this is good news rather than bad.

First, if data modelers take time to make up for missing analysis they can save the project. There is simply no way to design a satisfactory database without understanding business entities, relationships, and attributes, and the data that will feed the database. By taking time to figure these things out modelers not only design the right database but also positively influence the design of the application that uses the database.  Modeling schedule overruns can be time well spent.

Second, I’ve seen managers go through the dynamic that Mr. Geiger describes and learn to start data modeling earlier. These project planners learn from their experience and bring in the data folks early, front-loading their work in the requirements process.  I’ve found in those cases that data modeling substantially improves the quality of requirements, and as a result the chances of a successful project.

One final note: all this is still the case on an Agile BI effort.  Requirements may be less structured, and iteration scope is of course much smaller, but sources must be profiled and business entities, relationships, and attributes understood before successful database design.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News
edge networks in manufacturing
Edge Infrastructure Strategies for Data-Driven Manufacturers
Big Data Exclusive
data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Six Enterprise Mega Trends to watch in 2010

11 Min Read

How to Boost Service, Cut Costs and Deliver Great Customer Experiences – Even in an Economic Downturn

6 Min Read

Why Context Matters – Forget Real-Time, Achieve Right-Time

9 Min Read

Thoughts for John Aitchison

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?