Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: First Look – Modern Analytics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Modeling > First Look – Modern Analytics
AnalyticsModelingPredictive Analytics

First Look – Modern Analytics

JamesTaylor
JamesTaylor
5 Min Read
SHARE

Modern Analytics was founded in 2001 by a team that originally met building analytical capabilities for a major European bank. They wanted to see if they could make it easier to deliver the kind of analytic infrastructure they had developed for the bank. Since then, they have worked in many industries and have developed this infrastructure, for which they hold a number of patents. They see themselves as having two key competencies:

Modern Analytics was founded in 2001 by a team that originally met building analytical capabilities for a major European bank. They wanted to see if they could make it easier to deliver the kind of analytic infrastructure they had developed for the bank. Since then, they have worked in many industries and have developed this infrastructure, for which they hold a number of patents. They see themselves as having two key competencies:

  • Data handling.
    They have developed an automated ETL infrastructure to build analytical data sets. This process handles the transformations and manipulations, as well as master data management for very large volumes of analytic data. The aim is for complete process automation of this analytical data preparation. They routinely handle very large datasets (such as one with 56B rows and 50,000 attributes – 700TB) from which thousands of derived attributes must be created for modeling.
  • Analytics.
    They have been doing this for a long time and make use of best of breed algorithms of every type. Their “Model Factory” product has some of its own algorithms, as well as using many from other vendors. These algorithms cover the whole spectrum; including Regression, Neural Networks, Bayesian Classifiers, Optimization  of Genetic Algorithms, forecasting and fuzzy logic. The models they build cover propensity to buy, probability of default, fraud, optimizing marketing spend, forecasting and more.

In theory, analytic modeling follows a straightforward iterative process from exploration, to modeling and deployment, to monitoring and repeat. The reality experienced in most companies is an expensive and time consuming mess. To address this problem Modern Analytics provides a high volume predictive modeling service leveraged by their two core products – an AnalyticRepository to store models, and ModelFactory with automated data handling for building analytics. The three elements are:

More Read

Researchers at the University of Edinburgh in Scotland…
Master Data Management: Does an Effective Solution Exist?
How Businesses Use Analytics to Rank Higher in Search Engines
4 Benefits of Big Data for Ecommerce Owners and Shoppers
Leveraging Commerce Media & Data Analytics in Ecommerce
  • Analytical ETL (the automated data handling feature of ModelFactory)
    This is designed to shield the business and analytics teams from IT and vice versa. It provides “Lego-like” blocks for use in analytical processes, from OLAP to reporting to forecasting to predictive analytics. This allows business and analytic teams to share the data and their understanding of it effectively by defining and managing “business views” of the data. The underlying data integration and ETL are done using third party products with Modern Analytics focusing on the automation and management of this process.
  • AnalyticalRepository
    This function sits between the analytical ETL process and the modeling tool. It helps companies collect and protect their analytic IP and share it across projects. For instance, a variable that is generated as part of a project becomes available for all models that may be subsequently built. Variables are automatically monitored and suggested for adding to/removing from models, based on their effectiveness for various modeling efforts.
  • ModelFactory
    Baselines models to establish benchmarks and then automates model building and refresh. It delivers consistent and automated model building and reporting using multiple methods that can be compared and used, or integrated into an Ensemble model. It takes the rich analytic dataset from the Analytical ETL process and rapidly delivers multiple models. It allows for business constraints on things like the contribution of specific attributes (so the model cannot become too dependent on one factor). ModelFactory handles transformations, sampling, ranking, interaction detection, tolerance thresholds, classifiers and more. Business and IT people interact with the product using Excel in which they can see the models being built; specify new models to build etc.

Modern Analytics see their value add as being able to rapidly create high model volumes of the greatest quality at a fraction of the cost generally available on or off shore. This allows businesses to realize the promise of predictive modeling by deploying these models in potentially high value scenarios that were previously too cumbersome or cost prohibitive to try.

Copyright © 2011 http://jtonedm.com James Taylor

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The Anachronism Machine: The Language of Downton Abbey

4 Min Read

Transforming retail with analytics and decision management

3 Min Read

An Introduction to Data-Driven Marketing for the Auto Industry

11 Min Read

How to Stay Out of Cash Flow Crises Using Cash Position Analysis

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?