Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: First Look – Modern Analytics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Modeling > First Look – Modern Analytics
AnalyticsModelingPredictive Analytics

First Look – Modern Analytics

JamesTaylor
JamesTaylor
5 Min Read
SHARE

Modern Analytics was founded in 2001 by a team that originally met building analytical capabilities for a major European bank. They wanted to see if they could make it easier to deliver the kind of analytic infrastructure they had developed for the bank. Since then, they have worked in many industries and have developed this infrastructure, for which they hold a number of patents. They see themselves as having two key competencies:

Modern Analytics was founded in 2001 by a team that originally met building analytical capabilities for a major European bank. They wanted to see if they could make it easier to deliver the kind of analytic infrastructure they had developed for the bank. Since then, they have worked in many industries and have developed this infrastructure, for which they hold a number of patents. They see themselves as having two key competencies:

  • Data handling.
    They have developed an automated ETL infrastructure to build analytical data sets. This process handles the transformations and manipulations, as well as master data management for very large volumes of analytic data. The aim is for complete process automation of this analytical data preparation. They routinely handle very large datasets (such as one with 56B rows and 50,000 attributes – 700TB) from which thousands of derived attributes must be created for modeling.
  • Analytics.
    They have been doing this for a long time and make use of best of breed algorithms of every type. Their “Model Factory” product has some of its own algorithms, as well as using many from other vendors. These algorithms cover the whole spectrum; including Regression, Neural Networks, Bayesian Classifiers, Optimization  of Genetic Algorithms, forecasting and fuzzy logic. The models they build cover propensity to buy, probability of default, fraud, optimizing marketing spend, forecasting and more.

In theory, analytic modeling follows a straightforward iterative process from exploration, to modeling and deployment, to monitoring and repeat. The reality experienced in most companies is an expensive and time consuming mess. To address this problem Modern Analytics provides a high volume predictive modeling service leveraged by their two core products – an AnalyticRepository to store models, and ModelFactory with automated data handling for building analytics. The three elements are:

More Read

big data insights
Valuable Big Data Insights via Nike+ Gamification Platform
The Data Geek’s Guide to Happiness in 2013
Tips To Improve App UX with Advanced Mobile Analytics?
Business Intelligence: The Importance of Time to Value
Papers and Matlab Files
  • Analytical ETL (the automated data handling feature of ModelFactory)
    This is designed to shield the business and analytics teams from IT and vice versa. It provides “Lego-like” blocks for use in analytical processes, from OLAP to reporting to forecasting to predictive analytics. This allows business and analytic teams to share the data and their understanding of it effectively by defining and managing “business views” of the data. The underlying data integration and ETL are done using third party products with Modern Analytics focusing on the automation and management of this process.
  • AnalyticalRepository
    This function sits between the analytical ETL process and the modeling tool. It helps companies collect and protect their analytic IP and share it across projects. For instance, a variable that is generated as part of a project becomes available for all models that may be subsequently built. Variables are automatically monitored and suggested for adding to/removing from models, based on their effectiveness for various modeling efforts.
  • ModelFactory
    Baselines models to establish benchmarks and then automates model building and refresh. It delivers consistent and automated model building and reporting using multiple methods that can be compared and used, or integrated into an Ensemble model. It takes the rich analytic dataset from the Analytical ETL process and rapidly delivers multiple models. It allows for business constraints on things like the contribution of specific attributes (so the model cannot become too dependent on one factor). ModelFactory handles transformations, sampling, ranking, interaction detection, tolerance thresholds, classifiers and more. Business and IT people interact with the product using Excel in which they can see the models being built; specify new models to build etc.

Modern Analytics see their value add as being able to rapidly create high model volumes of the greatest quality at a fraction of the cost generally available on or off shore. This allows businesses to realize the promise of predictive modeling by deploying these models in potentially high value scenarios that were previously too cumbersome or cost prohibitive to try.

Copyright © 2011 http://jtonedm.com James Taylor

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (60)
How Finance & BI Teams Choose Accounting Software
Big Data Business Intelligence Exclusive
Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
AnalyticsPredictive Analytics

The Rising Value of Predictive Analytics

3 Min Read

Analytics Can Answer: “Why Can’t … ?

6 Min Read
data-driven seo for product pages
Analytics

6 Tips for Using Data Analytics for Product Page SEO

11 Min Read

Applying Data Analytics to Customer Experience and Service on Social Media

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?