Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Finding Important Data for a Modeling Exercise
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Finding Important Data for a Modeling Exercise
Uncategorized

Finding Important Data for a Modeling Exercise

vincentg64
vincentg64
3 Min Read
SHARE

Crosstabs, boxplots and scatterplots can be effectively used to find ‘important data’ amidst the growing tidal wave of information from mobile devices, websites, smart cards, credit cards, loyalty cards, and other sources. Finding what data to include in a modeling exercise with crosstabs, boxplots and scatterplots first requires a clearly defined business problem.

Crosstabs, boxplots and scatterplots can be effectively used to find ‘important data’ amidst the growing tidal wave of information from mobile devices, websites, smart cards, credit cards, loyalty cards, and other sources. Finding what data to include in a modeling exercise with crosstabs, boxplots and scatterplots first requires a clearly defined business problem. That’s because the importance of a data variable may be a direct function of the modeling question that is to be answered: which customers are most likely to leave, what do my most profitable customers look like, in what areas of the country are our sales highest. Only after a clear modeling question is defined can a target variable be created in the datafile: whether this be a decile variable ‘PROFITABLE?’, boolean data point ‘ATTRITION?’ or a ratio variable named ‘PENETRATION RATE?’.

Once a target variable is defined, crosstabs, boxplots and scatterplots can help identify independent variables that should be included in a modeling exercise: logistic regression, inductive decision tree (IDT) or otherwise. Every independent variable must be evaluated on its own to see what significant impact, if any, it has on the target variable’s results.

For example, let’s assume that of the 199 independent variables in a datafile, 100 are numerical (N), 99 are categorical (C), and that a target variable ‘ATTRITION?’ has been created. A crosstab and a CHI-SQUARE test may be used to evaluate each of the 99 categorical variables against ATTRITION? according to how much it increases the likelihood of a customer attriting. T-TESTS, ANOVAS and MANOVAS might be used to analyze each of the 100 independent numerical variables for their impact on the likelihood of a customer attrition occurring.

More Read

Using business rules to add decision transparency
Teradata Partners: Going “Big”
Stoicism Redux
More than a spelling error
Book. Is. Done.

Let’s assume that, after this data finding exercise, each of the following variables were found to have a significant impact on the likelihood of a customer attriting:

Age (N)

Gender (C)

Income (N)

Education (C)

Marital Status (C)

Average $ Purchase (N)

From a sea of 200 data variables, 6 were deemed important enough to include in a logistic regression, decision tree, neural network, or other datamining algorithm. Crosstabs, scatterplots and boxplots should also be applied to the smaller dataset in order to learn whether any of these 6 variables are highly correlated, as two highly-related variables should not be included in a model.

Once this is accomplished, the creative excercise of modeling may begin to answer the business question that was defined.

TAGGED:data modeling
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive
qr codes for data-driven marketing
Role of QR Codes in Data-Driven Marketing
Big Data Exclusive
microsoft 365 data migration
Why Data-Driven Businesses Consider Microsoft 365 Migration
Big Data Exclusive
real time data activation
How to Choose a CDP for Real-Time Data Activation
Big Data Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Book Review: Data Modeling for Business

4 Min Read

Recommended read: The Predictioneer’s Game

6 Min Read

Marketing a book, country by country

9 Min Read
data-modeling-tools
Modeling

6 Amazing Cloud Based Data Modeling Tools to Try in 2017

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?