Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Doing Data Mining Out of Order
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Doing Data Mining Out of Order
Data Mining

Doing Data Mining Out of Order

DeanAbbott
DeanAbbott
4 Min Read
SHARE

I like the CRISP-DM process model for data mining, teach from it, and use it on my projects. I commend it to practitioners and managers routinely as an aid during any data mining project. However, while the process sequence is generally the one I use, I don’t always; data mining often requires more creativity and “art” to re-work the data than we would like; it would be very nice if we could create a checklist and just run through the list on every project!

I like the CRISP-DM process model for data mining, teach from it, and use it on my projects. I commend it to practitioners and managers routinely as an aid during any data mining project. However, while the process sequence is generally the one I use, I don’t always; data mining often requires more creativity and “art” to re-work the data than we would like; it would be very nice if we could create a checklist and just run through the list on every project! But unfortunately data doesn’t always cooperate in this way, and we therefore need to adapt to the specific data problems so that the data is better prepared.

For example, on a current financial risk project I am working, the customer is building data for predictive analytics for the first time. The customer is data savvy, but new to predictive analytics, so we’ve had to iterate several times on how the data is pulled and rolled up out of the database. In particular, target variable has had to be cleaned up because of historic coding anomalies.

One primary question to resolve for this project is an all-too-common debate over what is the right level of aggregation: do we use transactional data even though some customers have many transactions and some have few, or do we roll data up to the customer level to build customer risk models. (A transaction-based model will score each transaction for risk, whereas a customer-based model will score, daily, the risk associated with each customer given the new transactions that have been added.) There are advantages and disadvantages to both, but in this case, we are building a customer-centric risk model for reasons that make sense in this particular business context.

More Read

AT&T’s service, called FamilyMaps, allows people to…
Data Variety: What It’s All About
Data Miners: Participate in 3rd Annual Survey
Quick Strata update
How people use Twitter – 10 distinct usage groups

Back to the CRISP-DM process and why it is advantageous to deviate from CRISP-DM. In this project, we jumped from Business Understanding and the beginnings of Data Understanding straight to Modeling. I think in this case, I would call it “modeling” (small ‘m’) because we weren’t building models to predict risk, but rather to understand the target variable better. We were not sure exactly how clean the data was to begin with, especially the definition of the target variable, because no one had ever looked at the data in aggregate before, only on a single customer-by-customer basis. By building models, and seeing some fields that predict the target variable “too well”, we have been able to identify historic data inconsistencies and miscoding.

Now that we have the target variable better defined, I’m going back to the data understanding and data prep stages to complete those stages properly, and this is changing how the data will be prepped in addition to modifying the definition of the target variable. It’s also much more enjoyable to build models than do data prep, so for me this was a “win-win” anyway!

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The Next Big Thing is REALLY BIG: Interactions Versus Transactions

7 Min Read

Sleep patterns: Not too complicated (at least for me)

4 Min Read

Governmental IT: Analytics is not a dirty word

4 Min Read

Visual Complexity is a unified resource space for anyone…

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?