Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Decision Management in the New York Times
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Decision Management > Decision Management in the New York Times
Decision Management

Decision Management in the New York Times

JamesTaylor
JamesTaylor
3 Min Read
SHARE

There was an interesting article in the New York Times this weekend called Smarter than you think focused on e-discovery and the use of computers rather than hordes of lawyers. Two things strike me as interesting about this article.

There was an interesting article in the New York Times this weekend called Smarter than you think focused on e-discovery and the use of computers rather than hordes of lawyers. Two things strike me as interesting about this article.

The first is that it is a classic example of the power of beginning with the power in mind. E-Discovery of this kind might, almost certainly will, involve text analytics as discussed in the article. But it might also involve network analysis (to see how is connected to whom to find fraud rings or collaborators for instance), predictive analytics to see how likely it is that something is true about a transaction or company, and rules defined by experts (in this case lawyers) or by the boundaries of the case. Beginning with the decision in mind will ensure that the right mix of things are applied rather than simply asserting “this is e-discovery therefore we will use text analytics” which runs a risk that data in a database or other approaches will be overlooked.

More Read

Can we make the Information Revolution better for society?
Using TIBCO Spotfire to Analyze Google Analytics Data
Predictive Analytics in the Cloud Research on SmartData Collective
There Is No question But the Research Validity Question
Decision Management and the 4Ds

The other is that, while the focus of the article was on the reduction in staff needed, it fails to account for the massive growth in documents and data available in these cases. Without new tools, e-discovery could have been headed for what I call the “telephone operator event horizon” – the point at which e-discovery employed everyone because of the massive expansion in documents being processed (this is named after the famous prediction that expansion in telephone service would mean that half the population had to become a telephone operator – a prediction overtaken by the automated telephone exchange). Automation of previously expert decisions often shows this pattern:

  • Experts make decisions
  • The volume of these decisions being required begins to expand forcing a consideration of approaches to reducing the cost of the decision
  • The data needed for the decision is increasingly available in electronic form
  • This automation succeeds and in turn triggers an event larger increase in demand for the kind of decision being automated

Yes automation of decisions sometimes reduces the need for staff. Much more often it innovates and allows companies to apply the same staff to more problems by replacing boring, mechanical work with more interesting, more difficult work that is hard to automate or where automation is not desirable.

Copyright © 2011 http://jtonedm.com James Taylor

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai and satelite technology
How Machine Learning Improves Satellite Object Tracking
Exclusive Machine Learning
Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

business intelligence software for companies
AnalyticsBig DataBusiness IntelligenceCollaborative DataDecision ManagementExclusiveFeaturedKnowledge Management

4 Ways to Use Business Intelligence in Your Business

6 Min Read

Analysts Don’t Get No Respect – SDC Blogarama topic for November 14

2 Min Read

Considering IT Operational Decision Making as an Asset in Current Dynamics

7 Min Read

Zynga: A Big Data Company Masquerading as a Gaming Company

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?