Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: “Data Science”: what’s in a name?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > “Data Science”: what’s in a name?
CommentaryData MiningData Warehousing

“Data Science”: what’s in a name?

DavidMSmith
DavidMSmith
3 Min Read
SHARE

The terms “Data Science” and “Data Scientist” have only been in common usage for a little over a year, but they’ve really taken off since then: many companies are now hiring for “data scientists”, and entire conferences are run under the name of “data science”.

The terms “Data Science” and “Data Scientist” have only been in common usage for a little over a year, but they’ve really taken off since then: many companies are now hiring for “data scientists”, and entire conferences are run under the name of “data science”. But despite the widespread adoption, some have resisted the change from the more traditional terms like “statistician” or “quant” or “data analyst”.

Personally, I love the term. As a statistician, I was getting tired of explaining that no, I don’t spend my time writing down baseball or cricket scores. I think “Data Science” better describes what we actually do: a combination of computer hacking, data analysis, and problem solving. Pete Warden, initally resistant to the terminology, has since come around to the benefits of the phrase. (Pete, by the way, is the creator of the awesome Data Science Toolkit, a awesome open-source server with APIs for handy data-related tasks, like identifying proper names in unstructured text, or converting street addresses to latitude/longitude.) In his post at O’Reilly Radar, he addresses the following objections to the use of the term “data science”:

  • Data Science is not a real science. (“Anything that needs science in the name is not a real science”)
  • It’s an unnecessary label (why not just stick with statistician, etc.?)
  • The name doesn’t even make sense (what science doesn’t involve data?)
  • There’s no definition (personally, I think Drew Conway’s Data Science Venn Diagram is an excellent definition, expanded in his paper in IQT Quarterly)

Check out Pete’s full post for his refutations of these points. Pete concludes by saying it’s time for the community to rally around “Data Science”:

More Read

Welcome to the Decision Support Channel for the Business…
Decision Management and software development II – Model Driven Engineering
The Experience Economy
MicroStrain continues its winning streak with its Shear-Link…
The sentiment on US Economy from Twitter

I’m betting a lot on the persistence of the term. If I’m wrong the Data Science Toolkit will end up sounding as dated as “surfing the information super-highway.” I think data science, as a phrase, is here to stay though, whether we like it or not. That means we as a community can either step up and steer its future, or let others exploit its current name recognition and dilute it beyond usefulness. If we don’t rally around a workable definition to replace the current vagueness, we’ll have lost a powerful tool for explaining our work.

O’Reilly Radar: Why the term “data science” is flawed but useful 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive
warehousing in the age of big data
Top Challenges Of Product Warehousing In The Age Of Big Data
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Amazon Web Services Public Datasets

1 Min Read
Image
Data Warehousing

A Closer Look at RDDs

6 Min Read

SaaS aggregation and experimentation

4 Min Read

BI like Google

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?