Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Data Mining Theory vs. Practice
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Data Mining Theory vs. Practice
Data Mining

Data Mining Theory vs. Practice

DeanAbbott
DeanAbbott
3 Min Read
SHARE

In many fields, it is common to find a gap between theorists and practitioners. As stereotypes, theorists have a reputation for sniffing at anything which has not been optimized and proven to the nth degree, while practitioners show little interest in theory, as it “only ever works on paper”.

In many fields, it is common to find a gap between theorists and practitioners. As stereotypes, theorists have a reputation for sniffing at anything which has not been optimized and proven to the nth degree, while practitioners show little interest in theory, as it “only ever works on paper”.

I have been amazed at both extremes of this spectrum. Academic and standards journals seem to publish mostly articles which solve theoretical problems which will never arise in practice (but which permit solutions which are elegant or which can be optimized to some ridiculous level), or solutions which are trivial variations on previous work. The same goes for most masters and doctoral theses. On the other hand, I was shocked when software development colleagues (consultants: the last word in practice over theory) were unfamiliar with two’s complement arithmetic.

Data mining is certainly not immune to this problem. Not long ago, I came upon technical documentation for a linear regression which had been “fixed” by a logarithmic transformation of the dependent variable. (There is a correct way to fit coefficients in this circumstance, but that was not done in this case.) Even more astounding was the polynomial curve fit which was applied to “undo” the log transformation, to get back to the original units! Sadly, the practitioners in question did not even recognize the classic symptom of their error: residuals were much larger at the high end of their plots.

More Read

Facts not fears, confidence not certainty, critical thinking not wishful thinking
Analytics, Graph Search, APIs: Is Facebook Struggling with Big Data?
And The Verdict Is…Targeted Mobile Delivery!
Predictions for 2009
Decision Sciences in Healthcare – Academic Research Request

Data miners (statisticians, quantitative analysts, forecasters, etc.) come from a variety of fields, and enjoy diverse levels of formal training. Grounding in theory follows suit. The people we work for typically are capable of identifying only the most egregious technical errors in our work. This sets the stage for potential problems.

As a practitioner, I have found much that is useful in theory and suggest that it is a fountain which is worth returning to, from time to time. Reviewing new developments in our field, searching for useful techniques and guidance will benefit data miners, regardless of their seniority.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Data Mining Search Engine Update

1 Min Read

R Successor Language ‘Tea’ announced

4 Min Read
Image
AnalyticsBig DataBusiness IntelligenceCloud ComputingData MiningHadoopMapReducePredictive AnalyticsUnstructured Data

The Big Data Uprising: It’s Not About Big Or Data

12 Min Read

Top 5 Reasons R is Good for you

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?