Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Data Mining Book Review: Data Mining with R
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Book Review > Data Mining Book Review: Data Mining with R
Book ReviewR Programming Language

Data Mining Book Review: Data Mining with R

SandroSaitta
SandroSaitta
3 Min Read
SHARE

data mining with rLuis Torgo, interviewed on Data Mining Research, has recently published a book on data mining entitled “Data Mining with R, Learning with Case Studies”.

data mining with rLuis Torgo, interviewed on Data Mining Research, has recently published a book on data mining entitled “Data Mining with R, Learning with Case Studies”. The book starts with an Introduction to R. Nicely written, it explains concepts that are needed to use this programming language for data mining. The book is then divided in four case studies. Each case study introduces data mining concepts that are illustrated using R.

First, pre-processing and data visualization are introduced through the prediction of algae blooms. Second, come the modelling and time ordering with the stock market application. Then, outlier detection and clustering are presented through fraud detection. Finally, feature selection and cross-validation are introduced through the classification of microarray samples. There is no introduction to data mining, but it’s not a problem since concepts are explained through the different case studies.

Theoretical concepts are always linked to examples. This is the case for most of the data mining books. Luis goes a step further by linking each application to the corresponding code in R. It is thus easy to both understand a concept as well as implementing it with R. This is certainly one of the best book for a direct implementation of data mining algorithms. Another good point of the book is that for most of the problems there are different ways to solve them.

More Read

R Chart featured in Facebook IPO
Who Is Winning the Real Cyber War?
Is My Data Really Mine?
Political Revolutions on Twitter, Visualized with R
Fantasy Football Modeling with R

I have one remark regarding the stock market prediction chapter. I have already discussed this issue when I was working in finance. The author states that the percentage of profitable trades should be above 50% to have a successful trading strategy. This is not always the case. Imagine a system where each winning trade brings $2 while loosing trades costs $1. Since you can earn more money with winning trades than what you loose with loosing trades, you can thus still have a successful trading strategy with 48% of winning trades, for example.

As a conclusion, this is an invaluable resource for data miners, R programmers as well as people involved in fields such as fraud detection and stock market prediction. If you’re serious about data mining and want to learn from experiences in the field, don’t hesitate!

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai kids and their parents
How Cities Use AI to Improve Playground Design
Exclusive News
human resource data
The Integration of Employee Experience with Enterprise Data Tools
Big Data Exclusive
protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

The R-Files: Martyn Plummer

6 Min Read

Analytics Projects Are Like Skiing Through Moguls?

1 Min Read
Image
HadoopR Programming LanguageSoftware

Putting the R in Cloudera and Hortonworks Hadoop

4 Min Read
Image
AnalyticsR Programming LanguageSoftware

Choosing Your First Programming Language

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?