Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Can Big Data Analytics Solve “Too Big to Fail” Banking Complexity?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > Can Big Data Analytics Solve “Too Big to Fail” Banking Complexity?
AnalyticsData WarehousingExclusiveMapReduceRisk Management

Can Big Data Analytics Solve “Too Big to Fail” Banking Complexity?

paulbarsch
paulbarsch
4 Min Read
SHARE

Despite investing millions upon millions of dollars in information technology systems, analytical modeling and PhD talent sourced from the best universities, global banks still have difficulty understanding their own business operations and investment risks, much less complex financial markets. Can “Big Data” technologies such as MapReduce/Hadoop, or even more mature technologies like BI/Data Warehousing help banks make better sense of their own complex internal systems and processes, much less tangled and interdependent global financial markets?

Despite investing millions upon millions of dollars in information technology systems, analytical modeling and PhD talent sourced from the best universities, global banks still have difficulty understanding their own business operations and investment risks, much less complex financial markets. Can “Big Data” technologies such as MapReduce/Hadoop, or even more mature technologies like BI/Data Warehousing help banks make better sense of their own complex internal systems and processes, much less tangled and interdependent global financial markets?

British physicist and cosmologist, Stephen Hawking, in 2000 said; “I think the next century will be the century of complexity.” He wasn’t kidding.

More Read

Big Data Analytics: Reframing Political Campaigns
From Master Data to Master Graph
How Artificial Intelligence (AI) Is Changing Banking
Predictive Analytics Toolbox
Release of iPad 2 to drive Mobile Business Intelligence Adoption

While Hawking was surely speaking of science and technology, it’s of little doubt he’d also look at global financial markets and financial players (hedge funds, banks, institutional and individual investors and more) as a very complex system.

With hundreds of millions of hidden connections and interdependencies, hundreds of thousands of various hard-to-understand financial products, and millions if not billions of “actors” each with their own agenda, global financial markets are the perfect example of extreme complexity.  In fact, the global financial system is so complex that even attempts to analytically model and predict markets may have worked for a point in time, but ultimately failed to help companies manage their investment risks.

Some argue that complexity in markets might be deciphered through better reporting and transparency.  If every financial firm were required to provide deeper transparency into their positions, transactions, and contracts, then might it be possible for regulators to more thoroughly police markets?

Financial Times writer Gillian Tett has been reading the published work of Professor Henry Hu at University of Texas.  In Tett’s article; “How ‘too big to fail’ banks have become ‘too complex to exist’ (registration required)” she says that Professor Hu argues technological advances and financial innovation (i.e. derivatives) have made financial instruments and flows too difficult to map. Moreover, Hu believes financial intermediaries themselves are so complex that they’ll continually have difficulty making sense of shifting markets.

Is a “too big to fail” situation exacerbated by a “too complex to exist” problem? And can technological advances such as further adoption of MapReduce or Hadoop platforms be considered a potential savior?  Hu seems to believe that supercomputers and more raw economic data might be one way to better understand complex financial markets.

However, even if massive data sets can be better searched, counted, aggregated and reported with MapReduce/Hadoop platforms, superior cognitive skills are necessary to make sense of outputs and then make recommendations and/or take actions based on findings. This kind of talent is in short supply.

It’s even highly likely the scope of complexity in financial markets is beyond today’s technology to compute, sort and analyze. And if that supposition is true, should next steps be to take measures to moderate if not minimize additional complexity?

Questions:

  • Are “Big Data” analytics the savior to mapping complex and global financial flows?
  • Is the global financial system—with its billions of relationships and interdependencies—past the point of understanding and prediction with mathematics and today’s compute power?
TAGGED:bankingbig datacomplexityrisk management
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

machine learning books
ExclusiveMachine Learning

Top Machine Learning Books And Videos For Beginners And Professionals

5 Min Read

Managing By the Numbers: Penny Wise, Pound Foolish?

4 Min Read
football data collection and analytics
Big Data

Unleashing Victory: How Data Collection Is Revolutionizing Football Performance Analysis!

4 Min Read
Experts Debate: Is Big Data a Boon or Risk for Actuaries?
Big DataExclusive

Experts Debate: Is Big Data a Boon or Risk for Actuaries?

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?