Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Build vs. Buy? Things to Consider Before Building an In-House Analytics System
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Build vs. Buy? Things to Consider Before Building an In-House Analytics System
Analytics

Build vs. Buy? Things to Consider Before Building an In-House Analytics System

Puneet Pandit
Puneet Pandit
4 Min Read
Image
SHARE

ImageMany analytics projects involving log files focus on operational event data. IT use cases around such projects typically focus on locating errors, warnings and critical event information within mountains of data. However, software applications and technology devices produce much more machine data than just log files, which can be incredibly complex.

ImageMany analytics projects involving log files focus on operational event data. IT use cases around such projects typically focus on locating errors, warnings and critical event information within mountains of data. However, software applications and technology devices produce much more machine data than just log files, which can be incredibly complex.

Organizations need to search and mine information contained in machine data and have two choices to execute this challenge: 1) obtain a purpose-built analytics system or 2) build one in-house. While the latter option may sound appealing at first, here are some things to consider before building an in-house machine analytics system:

1. Different users have different requirements

More Read

The Role of Advanced Analytics in CRM
Human Resources Analytics – Actionable Insights From Employee Satisfaction Surveys
What to Know Before Recruiting an Analyst to Handle Company Data
Discover the Power of Analytical Insights in Your Business Data
Researchers mine millions of metaphors through computer-based techniques

A machine data analytics solution must satisfy the requirements of a wide range of internal consumers. A support engineer working a case needs to be able to see patterns of events and statistics over time grouped by specifics system components. An account manager, professional services engineer or sales rep has very different data analysis needs that involve being able to quickly spot reliability, performance and other issues involving an account, while a marketing or program manager needs spotting feature adoption and trends in product demand. This differentiation between jobs and teams highlights the complexity of an analytics system through machine data.

 2. Every product has a complex and unique representation for machine data

For a set of data to be useful, it needs to communicate detailed information about the configuration, events, and statistics of each product’s unique architecture. Applications, appliances, software companies always log events, counters and information about internal component states, down to the level of vendor-specific abstractions. Much of this data will be specific and will not conform to the common information model for interoperability or end use.

3. A useful data archive will be “Big Data

To be of maximal benefit to all consumers, a good set of machine data need to contain “everything.” Trending and field analysis require detailed parsing for all systems continuously, not just when problems are detected. A successful product may have thousands or even millions of devices and systems reporting data back regularly. The volume of data received and retained in such a case is likely to be in the range of hundreds of terabytes or petabytes over the course of a year.

4. Data formatting and semantics will change quickly and without notice

Machine data analytics require quick adaptation, edge-case coverage and continuous business leverage. A machine data analytics solution cannot expect schematized for specially formatted data, it needs to adapt quickly to changes in format of information from machine logs while maintaining semantic continuity with existing tools. 

In-house solution: The bottom line

While companies can choose to build such an analytical solution in house, it’s not worth the time and effort to do so. An in-house machine data analytics solution is a complex high-performance big data project associated BI tools that requires a variety of committed resources for an extended period of time. It’s inherently time-consuming and risky if not planned properly with appropriate resources needed to design and implement, but also to maintain and manage its life cycle on a continued basis.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

High-Performing Predictive Analytics with R and Hadoop

2 Min Read

Content Analysis and the Internet of Things: Never Leave the Fridge Door Open Again?

4 Min Read
customer segmentation analysis for email
AnalyticsBig DataExclusiveMarketing

How Big Data Improves Customer Segmentation Analysis For Email Marketers

16 Min Read

Are You Transformed? The MIT Report on Analytics

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?