Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Before Starting, Consider 5 Reasons Your Big Data Project Will Fail
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Exclusive > Before Starting, Consider 5 Reasons Your Big Data Project Will Fail
Exclusive

Before Starting, Consider 5 Reasons Your Big Data Project Will Fail

Patricia Bajis
Patricia Bajis
8 Min Read
big data disrupting tech
Shutterstock Licensed Photo
SHARE

Whether companies are finding revolutionary ways to use data for personalized recommendations, like Netflix, or getting in trouble for illegally targeting users, like Facebook, big data is an integral element in optimizing efficiency. However, if your company is ready to give their customers a better user experience while shopping for the best homeowners insurance, or if you’re trying to save money in customer clothing returns, diving into a big data project isn’t going to be your saving grace.

Contents
1. You aren’t open to the answers you’ll get2. Your goals aren’t clearly defined3. You’re working with too many people4. You’re trying to move too fast5. Your view of data is hurting your effortsFinal Thoughts

In fact, according to Nick Heudecker, an Gartner analyst, 85 percent of all big data projects fail. These failures come from the lack of understanding in how to run a big data project, and in an interview with interview with TechRepublic, Heudecker sites company adoption as the sore spot, not the technology itself.

If your company is itching to use data in their business practice and wants the project to succeed, there are simple steps to help you stay out of the 85 percent statistic. We’re detailing the 5 mistakes you are likely to make during your big data project that would make it fail in hopes that you can avoid these problems before they arise.

1. You aren’t open to the answers you’ll get

As Heudecker stated earlier, big data projects don’t fail because of the technology. They are more likely to fail due to difficulty fitting into the current workflow and being accepted by higher-ups. This is confirmed by a survey conducted by the Fortune Knowledge Group which finds these powerful executives more likely to “trust their gut” over the answers data projects derive.

More Read

ai-driven mobile app development in e-commerce
Benefits of AI-Driven Mobile App Development in E-Commerce
Challenges of Hiring Dedicated Developers for AI Projects
Data-Driven Marketers Must Configure Outlook Data Files
Top Five AI-Driven Digital Marketing Tools in 2023
Benefits of Using Metal Laser Marking and Big Data Together

A survey conducted by NewVantage Partners on big data adoption finds that failure “lies in the apparent difficulty of organizational and cultural change around big data. Big data technology is not the problem; management understanding, organizational alignment, and general organizational resistance are the culprits. If only people were as malleable as data.”

When beginning any new project or adopting a new technology at work, it is difficult for seamless integration to start at the bottom. If higher up executives are truly on board with the effort, a company adoption will benefit from their outright confidence and practice of the technology. This not only sets a precedent for the other employees but allows for faster and smoother integration into the workflow.

2. Your goals aren’t clearly defined

If your higher-ups aren’t completely on board with big data or don’t understand the value big data can bring to a company, this can create an adoption problem. Begin your efforts with a defined goal that is measurable and shared with others. Simply to ‘improve efficiency’ or ‘enhance the customer experience’ are not measurable or sharable. If you want to save money for your retail company, look at ways to decrease customer returns. If you want to generate higher revenue, look at ways increase sales through your affiliate links.

Not only can these elements be tracked and presented, but it puts your team on the same page. Big data is called big for a reason—there’s plenty of it. Your team can get easily overwhelmed if you’re not working towards a concrete marker that can be a marker for success.

3. You’re working with too many people

When coming from a place where big data is contested, if you start with a large team that doesn’t produce immediate results, this could discourage your company from continuing with the project. Start with a small team of essential people and define your goals for success. Once the project gains momentum and the results of your efforts and integrating into the workflow, you can begin to add additional team members.

If you feel your team’s goals need more people, you may be aiming for results that are unattainable in the time period your company would expect them. Take some time to plan out the specific goals that you see feasible in a time period that allows you to show management the benefit of investing in this project. From there, you can look to expand on a company-specific basis based on project adaptability.

4. You’re trying to move too fast

By setting realistic results with a small team, you should inform executives when you’ll likely start to see results by. Many big data projects equate a large team with fast results and often end up disappointed and a part of the 85 percent failure statistic. Big data obviously has many benefits to a company and, when used correctly, can help in all areas from financial to customer satisfaction. However, many projects aren’t getting to experience this due to the false perception that these results happen quickly.

As TechRepublic states in their coverage of big data failure, “in general, however much vendors may want their customers to go big with big data, the last few years of rampant big data failure suggest that a far better way is to start small, and build slowly. Let [developers] experiment and grow projects organically. Given the current 15% success rate of big data projects, it’s time to try something different.”

5. Your view of data is hurting your efforts

Companies tend to see data as something they get from running their business, a byproduct of their main efforts. However, executives and employees alike should be valuing it “as a strategic asset to the company.” With this mindset, it makes using data to aid business practice a necessity, instead of a simple side project that one hopes to see results from.

Once this view is established, it’s going to allow the project to flow into your workplace environment at a faster and more efficient pace. This is because, like any project that a company deems salient to success, you will be given the time and resources to map out “the strategy and priorities regarding skills are defined.” This will set your team up for future success, as “a critical success factor for its implementation is the ability of the organization to build, grow and sustain a multidisciplinary team to address the identified business problems.” However, a company needs to view and value the work of the big data in this way in order for their efforts to grow within the company.

Final Thoughts

These are exciting times for big data, but that excitement can encourage people to jump too quickly into ambitious projects. You can determine how to succeed with a big data project, but it’s all about proper planning. Take these lessons to heart and get ready to power up your project. Here’s to your future big data success.

Share This Article
Facebook Pinterest LinkedIn
Share
ByPatricia Bajis
Follow:
Patricia Bajis bio: Patricia works for Benzinga, a Detroit-based media outlet, where she creates educational content surrounding investing, insurance, and banking. She recently earned a B.A. in English Language and Literature from the University of Michigan.

Follow us on Facebook

Latest News

big data analytics in transporation
Turning Data Into Decisions: How Analytics Improves Transportation Strategy
Analytics Big Data Exclusive
AI and fund manager software
AI And The Acceleration Of Information Flows From Fund Managers To Investors
Artificial Intelligence Exclusive
sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

big data approaches to marketing
Big DataExclusive

Can Big Data Approaches To Marketing Slash Business Closure Rates?

8 Min Read
ICO and GDPR
Big DataData ManagementExclusivePolicy and GovernancePrivacyRisk ManagementSecurity

Can ICO Data Awareness Campaigns Create More Trust In Crypto?

8 Min Read
cybersecurity mistakes
Best PracticesData ManagementExclusiveITPrivacyRisk ManagementSecurity

7 Disastrous Cybersecurity Mistakes In A Big Data World

8 Min Read
there are pros and cons of selling on amazon as a data-driven business
Big Data

Pros and Cons of Having a Data-Driven eCommerce Business on Amazon

11 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?