Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Analytics and the Next Best Activity Strategy
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Analytics and the Next Best Activity Strategy
AnalyticsData Mining

Analytics and the Next Best Activity Strategy

Editor SDC
Editor SDC
3 Min Read
SHARE
Analytics should be considered as fundamental components of each organization’s marketing strategy instead of occasionally be used for ad-hoc projects. They should drive the Strategy for better customer understanding and handling. The insight gained should be put together in the context of a Next Best Activity (NBA) Strategy, enabling the setting of “personalized” marketing objectives.
Analytics should be considered as fundamental components of each organization’s marketing strategy instead of occasionally be used for ad-hoc projects. They should drive the Strategy for better customer understanding and handling. The insight gained should be put together in the context of a Next Best Activity (NBA) Strategy, enabling the setting of “personalized” marketing objectives.
By using analytics and data mining, the organization can decide on a more informed base the next best marketing activity for each customer and select an “individualized” approach which might include:
  • An offer for preventing attrition, mainly for high-value, at-risk customers. 
  • A promotion for the right add-on product and a targeted cross/up/deep selling offer for customers with growth potential. 
  • Imposing usage limitations and restrictions on customers with bad payment records and bad credit risk scores. 
  • The development of a new product/offering tailored to the specific characteristics of an identified segment and so on. 

The main components that should be taken into account in the design of the NBA strategy are:

  1. The current and expected/estimated customer profitability and value. 
  2. The type of customer, the differentiating behavioral and demographic characteristics, the identified needs and attitudes revealed through data analysis and segmentation. 
  3. The growth potential as designated by relevant cross/up/deep selling models and propensities. 
  4. The defection risk (churn propensity) as estimated by a voluntary churn model. 
  5. The payment behaviour and credit score of the customer. 
In order to better understand the role of these components and see the NBA strategy in action let’s consider the following simple example. A high-value banking customer has a high potential of accepting a mortgage loan offer but at the same time is also scored with a high probability to churn. What is the best approach for this customer and how should he be handled / approached by the organization? As a high-value, at-risk customer, the top priority is to prevent his leaving and lure him with an offer that matches his particular profile. Therefore, instead of receiving a cross-selling offer, he should be included in a retention campaign and contacted with an offer tailored to the specific characteristics of the segment to which he belongs.


Konstantinos Tsiptsis (ktsiptsis@gmail.com)
Antonios Chorianopoulos (chorian2@gmail.com)


Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Salesforce Struggles to Deliver on the Dream of Analytics

10 Min Read

Case Study: Using Social Media and Text Analytics to Improve the Neiman Marcus Customer Experience

1 Min Read
Big data analytics
AnalyticsBig Data

How The Online Gaming Industry Uses Big Data Analytics To Grow

9 Min Read

To Test or to Target? Where to start for best ROI?

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?