Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: 5 Principles of Analytical Hub Architecture (Part 2)
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > IT > Hardware > 5 Principles of Analytical Hub Architecture (Part 2)
AnalyticsHardwareIT

5 Principles of Analytical Hub Architecture (Part 2)

RickSherman
RickSherman
2 Min Read
SHARE

Continuing the discussion on analytical hub design, here’s the second part of my post on the architecture principles. If you missed the first two principles (1. Data from everywhere needs to be accessible and integrated and 2. Building solutions must be fast, iterative and repeatable) see this earlier blog post.

3. The advanced analytics elite needs to “run the show”

Continuing the discussion on analytical hub design, here’s the second part of my post on the architecture principles. If you missed the first two principles (1. Data from everywhere needs to be accessible and integrated and 2. Building solutions must be fast, iterative and repeatable) see this earlier blog post.

3. The advanced analytics elite needs to “run the show”

More Read

Business Analytics – Opposition or Proposition?
Why Are So Many Large and Small Companies Transitioning to AWS?
5 Signs Your Company Is Ready for BYOD
Why Hybrid Will Be the Next Chapter for Cloud Adoption
“Ford is evidently hoping it can win back customers with…

IT has traditionally managed the data and application environments. In this custodial role, IT has controlled access and has gone through a rigorous process to ensure that data is managed and integrated as an enterprise asset. The enterprise, and IT, needs to entrust data scientists with the responsibility to understand and appropriately use data of varying quality in creating their analytical solutions. Data is often imperfect, but data scientists are the business’s trusted advisors who have the knowledge required to be the decision-makers.

4. Solutions’ models must be integrated back into business processes

When predictive models are built, they often need to be integrated into business processes to enable more informed decision-making. After the data scientists build the models, there is a hand-off to IT to perform the necessary integration and support their ongoing operation.

5. Sufficient infrastructure must be available for conducting advanced analytics

This infrastructure must be scalable and expandable as the data volumes, integration needs and analytical complexities naturally increase.  Insufficient infrastructure has historically limited the depth, breadth and timeliness of advanced analytics as data scientists often used makeshift environments.

Read more about this in my free white paper on Analytic Data Hub design entitled Analytics Best Practices: The Analytical Hub.

 
TAGGED:hubsystem architecture
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

analytical hub architecture
AnalyticsBest PracticesBig DataData QualityITModelingPredictive Analytics

5 Principles of Analytical Hub Architecture (Part 1)

3 Min Read

Monitoring a System

5 Min Read

Design Patterns

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?