Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Analytic Teams Are Rapidly Reaching Critical Mass
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Analytic Teams Are Rapidly Reaching Critical Mass
AnalyticsBig Data

Analytic Teams Are Rapidly Reaching Critical Mass

BillFranks
BillFranks
5 Min Read
Image
SHARE

ImageOver the past year, I have seen a very positive and encouraging shift in my discussions with organizations about the analytic talent that they employ.  More and more discussions are about how to best structure an analytics organization as many companies have now found themselves with enough analytic professionals to make it necessary to figure out how to make the most of them.

ImageOver the past year, I have seen a very positive and encouraging shift in my discussions with organizations about the analytic talent that they employ.  More and more discussions are about how to best structure an analytics organization as many companies have now found themselves with enough analytic professionals to make it necessary to figure out how to make the most of them. The speed of the shift from “should we hire anyone?” to “how do I organize all these people?” has surprised me. We are reaching a critical mass of analytic talent in organizations so that organizing them is a challenge.  I am thrilled to see this challenge arise because it means that companies are truly starting to embrace analytics. It also means that over time, it will be easier to have a fulfilling career path in analytics than it was when I first started out.

Even just a few years ago, many organizations were still discussing if they should hire full time analytic professionals, let alone how they should organize them. They typically had either no analytic professionals on staff, or a very small number scattered across a large organization. (I consider an analytic professional to be someone who focuses on deeper analytics, with work focusing on data mining, predictive modeling, and data science, among others.)  There have always been companies well ahead of the curve, most notably in the financial industry. However, most companies were just getting started with the development of an analytics organization up until the last few years.

There have been numerous discussions on how to structure analytic teams. I addressed the topic in Taming The Big Data Tidal Wave. Tom Davenport also recently weighed in on the topic in a blog for the International Institute for Analytics. We both agree that some centralized analytic function is required. The way Tom describes “analysts assigned to and rotated among business units” fits well with my preferred hybrid model. In the end, it isn’t as important to me if the business unit resources report directly to the central team or directly to the units as long as there is strong linkage all around and the business unit perceives themselves as owning the resources.

More Read

data-driven workflows
Data-Driven Approaches to Better Optimized Enterprise Workflows
Quick Visualization of irs.gov Search Queries
Teradata Active Enterprise Update
White Paper:Automated sound signals quality estimation
Special automotive track at the Enterprise Intelligence Summit

Rather than focus on the specific structure, I want to focus here on one aspect that is often overlooked related to a centralized team. What is often overlooked is the fact that not all valuable analytics are at a business unit level. Any given unit will fund only those analytics that are core to the unit. However, at the corporate level, there is another layer of standard analytics and also some entirely new analytics that become relevant when looking across the entire business.  Without a centralized function with funding to specifically address cross unit analytics, such analytics just won’t get done. In many cases, the individual units may benefit along with corporate, but not enough to absorb the cost alone. When the cost is shared and the benefits enabled for all units, it can be a big win for the company.

If your organization is among those continuing to grow an analytics function, start to think about the best way to organize your analytic professionals given the needs and political realities of your situation. It may be a challenging discussion, but the good news is that these days it is easy to find others who are struggling with the same issue. And we will soon have ample examples of those who have completed their transition to learn from.

Originally published by the International Institute for Analytics

 

Share This Article
Facebook Pinterest LinkedIn
Share
ByBillFranks
Follow:
Bill Franks is Chief Analytics Officer for The International Institute For Analytics (IIA). Franks is also the author of Taming The Big Data Tidal Wave and The Analytics Revolution. His work has spanned clients in a variety of industries for companies ranging in size from Fortune 100 companies to small non-profit organizations. You can learn more at http://www.bill-franks.com.

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Knowledge Management as Social CRM – Supporting Your Social Customer

3 Min Read

Death Of The Relational Database

7 Min Read

Interview KXEN Bruno Delahaye

11 Min Read
data warehouse
Best PracticesBig DataBusiness IntelligenceData WarehousingExclusiveModeling

Data Warehousing: Lessons We Have Failed to Learn

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?