Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Analytic Applications are Built by Data Scientists
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Quality > Analytic Applications are Built by Data Scientists
Data QualityPredictive AnalyticsR Programming Language

Analytic Applications are Built by Data Scientists

DavidMSmith
DavidMSmith
3 Min Read
SHARE

Ventana Research analyst David Menninger was on the judging panel for the Applications of R in Business contest. In a post on the Ventana research blog, he offers his perspectives on the contest, noting that

Ventana Research analyst David Menninger was on the judging panel for the Applications of R in Business contest. In a post on the Ventana research blog, he offers his perspectives on the contest, noting that

R, as a statistical package, includes many algorithms for predictive analytics, including regression, clustering, classification, text mining and other techniques. The contest submissions supported a variety of business cases, including, among others, predicting order amounts to optimize manufacturing processes,  predicting marketing campaign effectiveness to optimize marketing spending, predicting liquid steel temperatures to optimize steel plant processes and performing sentiment analysis of Twitter data.

(Incidentally, David also has a great riff on the terminology of “predictive analytics” and “big data” out today.) He also notes that these applications are compelling precisely because of the close relationship between the contest entrants and the business problems they demonstrated how to solve:

More Read

big data and social media analytics
How Big Data Is Transforming Social Media Marketing
Big Data Joins The Fight Against Traumatic Brain Injuries
IBM DB2: Moving into the Era of Big Data
McKinsey Says Cloud Computing ‘Makes No Sense’
“Ford is evidently hoping it can win back customers with…

The entries also demonstrated a best practice: close alignment between the analyst and the underlying business objectives. Predictive analytics is not magic. It requires an understanding of business processes and an understanding of statistical techniques. The judging criteria reflected this requirement as well. One of the three categories we were asked to score was applicability of the submission to business. I think it’s clear how the analyses in the winning entries could provide significant business value.

As David notes, however, the counterpoint to this is that the analyst must combine *both* the . “How many people in your organization could perform those types of analyses,” he rightly asks. A combination of statistical tools along with domain expertise (plus the technical skills to implement the solution) is the hallmark of a good data scientist, which exactly why many organizations are looking to build effective data science teams.

By the way, while the concept of “data scientist” is relatively new, this idea of combining statistical analysts with domain expertise is not. Bill Cleveland (yes, that Bill Cleveland) made similar suggestions in a prescient paper back in 2001: “Data Science: An Action Plan for Expanding the Technical Areas of the Field of Statistics“. (ISI Review, 69)

David Menninger: Revolution Analytics Hosts Contest on Business Predicting the Future

TAGGED:big data
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

microsoft 365 data migration
Why Data-Driven Businesses Consider Microsoft 365 Migration
Big Data Exclusive
real time data activation
How to Choose a CDP for Real-Time Data Activation
Big Data Exclusive
street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

data flow works
Big Data

How Data Flow Works In MQ Telemetry Transport (MQTT)

12 Min Read
gaming big data
Big DataExclusive

Here’s How Big Data Is Transforming Online Gaming

5 Min Read
big data for marketing strategy
Big DataExclusive

4 Big Data Marketing Strategy Issues Holding You Back (And How To Fix Them)

10 Min Read
Video Marketing
Big DataMarketing

Is Big Data the Biggest Disruptor in Video Marketing?

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?