By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data-driven white label SEO
    Does Data Mining Really Help with White Label SEO?
    7 Min Read
    marketing analytics for hardware vendors
    IT Hardware Startups Turn to Data Analytics for Market Research
    9 Min Read
    big data and digital signage
    The Power of Big Data and Analytics in Digital Signage
    5 Min Read
    data analytics investing
    Data Analytics Boosts ROI of Investment Trusts
    9 Min Read
    football data collection and analytics
    Unleashing Victory: How Data Collection Is Revolutionizing Football Performance Analysis!
    4 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Agile AND Industrial Analytics
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Agile AND Industrial Analytics
Uncategorized

Agile AND Industrial Analytics

JamesTaylor
Last updated: 2010/08/31 at 6:36 PM
JamesTaylor
4 Min Read
SHARE

I wrote a post called “It’s time to industrialize analytics” for Smart Data Collective a little while ago and it prompted Tom to reply with Agile vs Industrialized.

I wrote a post called “It’s time to industrialize analytics” for Smart Data Collective a little while ago and it prompted Tom to reply with Agile vs Industrialized.

To recap, the key point of my post was that we need to move away from analytics as a pure craft to one that has a more systematic focus. We need analytic teams that are focused on the end goal, whether that is a high-throughput operational system (a propensity model for use in a web marketing system for instance), a dashboard, report or visualization. Such a focus necessitates limitations on the freedom of the analytic team to use their favorite tools or bring whatever data seems helpful into the model. If we focus on the need to operationalize this model – to make it affect our business – then we will not be able to have total freedom in our analytic work. This is more true when models are being deployed into operational systems than when they are being deployed into more interactive, low-volume environments but it is always true at some level. Rolls Royce cars may be hand made in places but this work is still part of an industrial process – the need for it to fit into a finished product is still paramount. So it is with analytics – even when we are hand-tooling something, we should be aware of the “industrial” context in which we operate.

More Read

power of analytics

Harnessing the Power of Analytics For Direct-to-Consumer Businesses

The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
Automotive Industry Uses Analytics To Solve Pressing Supply Chain Issues
How can CIOs Build Business Value with Business Analytics?
Seven Benefits of Using AI to Perform Text Analysis

Tom’s follow-on point that industrialization is not appropriate for analytic discovery work is a valid one. Organizations often don’t know how analytics might be able to improve their business and must spend time and effort in a discovery phase. It is entirely appropriate to try new things, to do things one-off while figuring out what might be helpful. Analytics are not yet, in most companies, a standard part of the way they do business. Even if they are there will be times when the area being investigated is not well known enough to allow for a systematic approach – we will need to be agile about where and how to investigate. But remember, as I said in my original post

If the model is accurate but impractical to implement then it adds no business value and should, therefore, be considered a bad  model.

It does not matter if operationalization means putting the model into a high-volume process, an executive dashboard or sophisticated visualization. If you don’t impact business results then the model is no good. You can, and should, be agile about developing new analytics. But you should keep an eye on the end objective and make sure you can deliver business results.

 

Copyright © 2010 http://jtonedm.com James Taylor

Syndicated from International Institute for Analytics

TAGGED: analytics
JamesTaylor August 31, 2010 August 31, 2010
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

big data and IP laws
Big Data & AI In Collision Course With IP Laws – A Complete Guide
Big Data
ai in marketing
4 Ways AI Can Enhance Your Marketing Strategies
Marketing
sobm for ai-driven cybersecurity
Software Bill of Materials is Crucial for AI-Driven Cybersecurity
Security
IT budgeting for data-driven companies
IT Budgeting Practices for Data-Driven Companies
IT

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

power of analytics
Analytics

Harnessing the Power of Analytics For Direct-to-Consumer Businesses

6 Min Read
data-driven approach in healthcare
Analytics

The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas

6 Min Read
supply chain analytics
Analytics

Automotive Industry Uses Analytics To Solve Pressing Supply Chain Issues

6 Min Read
Analytics

How can CIOs Build Business Value with Business Analytics?

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?