Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Political Revolutions on Twitter, Visualized with R
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Visualization > Political Revolutions on Twitter, Visualized with R
Data VisualizationR Programming Language

Political Revolutions on Twitter, Visualized with R

DavidMSmith
DavidMSmith
3 Min Read
SHARE

Twitter has become a powerful medium for organizing and communicating with factions during popular uprisings: the crisis in Egypt, the uprising in Syria, the revolution in Iran, and other conflicts all around the world.

Twitter has become a powerful medium for organizing and communicating with factions during popular uprisings: the crisis in Egypt, the uprising in Syria, the revolution in Iran, and other conflicts all around the world. Twitter’s effectiveness relies on its ability for the various factions to self-organize and to fight the information battle in social media.

Esteban Moro Egido, a mathematics professor at Universidad Carlos III in Madrid, puts this battle into stark relief with a video depicting Twitter activity around Spain’s general strike in March this year. Esteban has used the R language for years to understand complex networks with applications in areas such as telecommunications and social media, and has put those skills to great use analyzing all of the tweets, retweets and mentions related to the strike. Here’s the video:

 

More Read

Top 3 Ways FP&A Analytics Can Get Your Financial House in Order
Resampling Data in Hadoop with RHadoop
Winners of Mozilla Open Data Competition announced
VC Investment Analytics on 20 Years of Investment Data
Data Comes Alive!

Each point in the animation represents a twitter user, each colour-coded according to their faction in the debate (pro-strike, anti-strike, or somewhere in between). He used community-finiding algorithms to automatically assign Twitter users to factions, and Esteban described the factions in an email:

The communities where identified using one of the community-finding algorithms in R. Specifically the walk trap algorithm run over the static graph of (weighted) RT graph between twitter accounts. So each Twitter account is assigned to a particular community right from the beginning. 

What we did afterwards was to check what these communities were talking about (tweets and RTs). We found that the tweets and RTs in the orange community were in favor of the general strike and the reasons behind it, while the tweets and RTs in the dark blue community were against the unions and the reasons behind the general strike. It is interesting to see that the communities found in the structural analysis of the RT graph also correspond to opinion communities, the reason being that there are not many RTs between groups which have such different opinions.  

There are other two communities in the video (light blue and green) which correspond to news media and, a bot network automatically tweeting about the general strike.

The animation itself was created entirely with R using the igraph package, and encoded to video using ffmpeg. You can create similar videos yourself for other dynamic political discussions on Twitter: Esteban has kindly provided a tutorial on how to create such animations, with R code. 

Implicit None: Temporal network of information diffusion in Twitter

 
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Data Scientist: Sexiest Job on the Planet

5 Min Read

Using Business Analytics to Ask the Big Questions of Big Data

4 Min Read

Growth in Data-Related Jobs, cnt’d

1 Min Read

Teradata Tops the Chart, Again

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?