Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Next query: NoSQL and Business Intelligence
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > Next query: NoSQL and Business Intelligence
Business IntelligenceData WarehousingSQL

Next query: NoSQL and Business Intelligence

Barry Devlin
Barry Devlin
7 Min Read
SHARE

just-say-nosql.pngBusiness intelligence (BI) has long been associated with relational databases and the SQL language.  From the earliest days of data warehousing, the qualities of the relational model have been highly valued in th

just-say-nosql.pngBusiness intelligence (BI) has long been associated with relational databases and the SQL language.  From the earliest days of data warehousing, the qualities of the relational model have been highly valued in the quest for data consistency and quality.  In addition, it was assumed that business users are comfortable with tables of information.  This has been proven true, especially by spreadsheets, much to IT’s chagrin.  Tables are also the lingua franca of BI tools and simple Select / Where queries are familiar to many users.  But, whatever the rationale, the association of BI and SQL is deeply embedded in the minds of most practitioners. So, the question arises–what about NoSQL; how does this relate to BI?  Can it be of use in data warehousing?

Good questions.  But first, you need to know what flavor of NoSQL you’re speaking about.  For brevity, I’ll focus only on one of the five or so varieties: document-oriented data stores.  (If you are interested in the others, the bigger picture–and a trip to Rome–I propose my two-day seminar there on 11-12 June!)  As I discovered about a year ago in a fascinating conversation with Max Schireson, president of 10gen / MongoDB, in this context a document is neither about e-mail contents nor Word documents; it refers to a particular data structure where records consist of an arbitrary set of fields, each identified by a name and value pair, structured in JSON (JavaScript Object Notation) or similar language.  For more details, refer to my white paper.  So, let me release you from your suspense now.  Can this be of use in BI? The short answer is yes.  But to fully grasp the extent, I’d like to introduce you to two MongoDB customers and how they are easing into BI using NoSQL.

I spoke to David Chancogne, CTO of Traackr, a web business measuring the influence of people who blog, tweet and otherwise contribute to the impression the general public forms of brands, products and more on the web.  The goal is to assist marketers and advertizing agencies track and target such influencers more effectively.  Traackr has built a MongoDB database of the contents of blogs, tweets, etc. and gives its customers reports and analyses of the top influencers in their areas of interest.  Is this BI?  In its broadest sense, yes.  The scope is very specific and the queries pre-defined, but this is still BI at its most basic.  Did Chancogne think of it as BI?  Actually not, it’s simply his business to provide analytics to his customers.  Probing a little deeper, I discovered that Traackr is continually trying to optimize its algorithm to rate influence.  They do this by extracting data from their database and playing with it in–wait for it—Excel!  More BI, but like many a start-up business before them, the choice of Excel was more through familiarity and ease-of-use.  Generic BI tools that run against a JSON data store, such as Pentaho’s NoSQL solution, Nucleon Software’s BI Studio, are beginning to appear that allow generic querying on the data without extracting it to Excel.

More Read

Mercer Total Compensation Management Analytics Help Retain Talent
When to Just Flip a Coin
Business Intelligence and Social Media
5 Considerations to Make Before Choosing a Web Hosting Company
Global SMEs Adopt New Business Intelligence Initiatives During COVID-19 Crisis

A conversation with Julian Browne led to further interesting insights.  Browne is the architect of Priority Moments (a location-aware customer loyalty program that offers discounts at affiliated retailers) at O2, the second-largest provider of mobile/cell phone services in the UK, with more than 20 million customers.  MongoDB was chosen as the platform for this service largely to deal with the complexity and variability of their product catalog.  The challenge is that there exists a bewildering variety of product sets that can be offered to different customers, and changes constantly at the whim of marketing.  The absence of a predefined schema, a key characteristic of document-oriented data stores, was a compelling argument for the technology choice.  But, what of BI?  Customer loyalty programs are prime BI territory, of course, and in this case tracking of uptake of offers is vital.  As with Traackr, initial BI was provided through hand-crafted Java programming, although there is growing interest in using the emerging BI tools.  Of more interest, however, is the experimental use of a specific feature of the database that allows a query to be left open and as records arrive in the database, they automatically appear in the result, which can be routed to a live HTML5 graph(1) giving real-time feedback to monitor program activity.

How would we summarize the situation regarding BI for document-oriented NoSQL databases?  What we see is a fairly recent database technology with its query facilities being used for basic, predefined BI.  As might be expected, more generic tooling for building queries is appearing.  The type of BI supported is focused, application-specific querying and reporting–the type associated with data marts in traditional BI.  This is exactly as we saw in the emergence of BI against relational databases.  Note that some of the querying is being performed against the live operational sources.  Again, we see the similarity with early reporting approaches with similar concerns about performance impacts on operations.  MongoDB addresses this through the creation of eventually consistent replicas.  Nonetheless, the demand for real-time BI continues to grow and certain classes of operational analytics will need such real-time or near real-time access.

Where NoSQL does not play a role in BI is also important.  Enterprise data warehouses (EDW), with their focus on creating consistent, integrated, historical stores of core business information are set to remain squarely in the relational database world.  But, where operational needs drive the choice of a NoSQL document-oriented data store, it is clear that BI can flourish in this environment too.  See my latest white paper, “Business Intelligence–NoSQL… No Problem”, for further details.

(1)  For background on this approach, see hummingbird and data-driven documents.

TAGGED:bibusiness intelligencesql
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

big data for contracting
AnalyticsBig Data

Big Data For Contracting: Everything You Need To Know

6 Min Read
cloud computing cost savings
Cloud Computing

The Cloud: More Than Just Cost Savings

4 Min Read
artificial intelligence marketing innovation
Artificial IntelligenceExclusiveMarketing

How Artificial Intelligence Makes Today’s Email Marketing Smarter

6 Min Read
big data helping claim processing
Big DataExclusive

The Injury Claims Industry Highlights How We Can Use Big Data For Law

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?