Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Taking Assumptions With A Grain Of Salt
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Taking Assumptions With A Grain Of Salt
Data MiningPredictive Analytics

Taking Assumptions With A Grain Of Salt

Editor SDC
Editor SDC
4 Min Read
SHARE

Occasionally, I come across descriptions of clustering or modeling techniques which include mention of “assumptions” being made by the algorithm. The “assumption” of normal errors from the linear model in least-squares regression is a good example. The “assumption” of Gaussian-distributed classes in discriminant analysis is another. I imagine that such assertions must leave novices with some questions and hesitation. What happens if these assumptions are not met? Can techniques ever be used if their assumptions are not tested and met? How badly can the assumption be broken before things go horribly wrong? It is important to understand the implications of these assumptions, and how they affect analysis.

In fact, the assumptions being made are made by the theorist who designed the algorithm, not the algorithm itself. Most often, such assumptions are necessary for some proof of optimality to hold. Considering myself the practical sort, I do not worry too much about these assumptions. What matters to me and my clients is how well the model works in practice (which can be assessed via test data), not how well its assumptions are met. Generally, such assumptions are rarely, if…


Occasionally, I come across descriptions of clustering or modeling techniques which include mention of “assumptions” being made by the algorithm. The “assumption” of normal errors from the linear model in least-squares regression is a good example. The “assumption” of Gaussian-distributed classes in discriminant analysis is another. I imagine that such assertions must leave novices with some questions and hesitation. What happens if these assumptions are not met? Can techniques ever be used if their assumptions are not tested and met? How badly can the assumption be broken before things go horribly wrong? It is important to understand the implications of these assumptions, and how they affect analysis.

In fact, the assumptions being made are made by the theorist who designed the algorithm, not the algorithm itself. Most often, such assumptions are necessary for some proof of optimality to hold. Considering myself the practical sort, I do not worry too much about these assumptions. What matters to me and my clients is how well the model works in practice (which can be assessed via test data), not how well its assumptions are met. Generally, such assumptions are rarely, if ever, strictly met in practice, and most of these algorithms do reasonably well even under such circumstances. A particular modeling algorithm may well be the best one available, despite not having its assumptions met.

More Read

Predictive Analytics in Healthcare
Here’s How The UK Government Is Using Big Data For Tax Collection
Kosmix, along with DeepPeep, are example of the Deep Web , aka…
The expansion of social media analytics – does it go too far?
Tweets are to Customer Knowledge as….?

My advice is to be aware of these assumptions to better understand the behavior of the algorithms one is using. Evaluate the performance of a specific modeling technique, not by looking back to its assumptions, but by looking forward to expected behavior, as indicated by rigorous out-of-sample and out-of-time testing.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

financial data
Engineering Trust into Enterprise Data with Smart MDM Automation
Big Data Exclusive
christina wocintechchat com 6dv3pe jnsg unsplash
How CIS Credentials Can Launch Your AI Development Career
Exclusive News
big data analytics in transporation
Turning Data Into Decisions: How Analytics Improves Transportation Strategy
Analytics Big Data Exclusive
AI and fund manager software
AI And The Acceleration Of Information Flows From Fund Managers To Investors
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Counting Observations

6 Min Read

Data Preprocessing – Normalization

1 Min Read

Great illustration of the hierarchy of analytical BI techniques

1 Min Read

Q & A with Eric Siegel, President of Prediction Impact

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?