Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A Topology of Search Concepts
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > A Topology of Search Concepts
Data Mining

A Topology of Search Concepts

Daniel Tunkelang
Daniel Tunkelang
3 Min Read
SHARE

Vegard Sandvold has an interesting post entitled “Help Me Design a Topology of Search Concepts” in which he visualizes assorted search approaches in a two-dimensional space, the two dimensions being the degree of information accessibility and whether the approach is algorithm-powered or user-powered.

His four quadrants:

  • Low information accessibility + algorithm-powered = simple search (e.g., keyword search)
  • Low information accessibility + user-powered = superficial search (e.g., collaborative filtering)
  • High information accessibility + algorithm-powered = ingenious search (e.g., question answering)
  • High information accessibility + user-powered = diligent search (e.g., faceted search)

I’m not sure how I feel about the quadrant names (though I like how my employer and I are champions of diligence!), but I do like this attempt to lay out different approaches to supporting information seeking, and I like his choice of axes…

More Read

Trying out glmnet: a case study in open-source development
The Law of Averages
Follow your SQL Server on Twitter!
With the help of IBM’s new supply chain consulting service,…
The power of business analytics

Vegard Sandvold has an interesting post entitled “Help Me Design a Topology of Search Concepts” in which he visualizes assorted search approaches in a two-dimensional space, the two dimensions being the degree of information accessibility and whether the approach is algorithm-powered or user-powered.

His four quadrants:

  • Low information accessibility + algorithm-powered = simple search (e.g., keyword search)
  • Low information accessibility + user-powered = superficial search (e.g., collaborative filtering)
  • High information accessibility + algorithm-powered = ingenious search (e.g., question answering)
  • High information accessibility + user-powered = diligent search (e.g., faceted search)

I’m not sure how I feel about the quadrant names (though I like how my employer and I are champions of diligence!), but I do like this attempt to lay out different approaches to supporting information seeking, and I like his choice of axes.

More importantly, I hope this analysis helps advance our ability as technologists to match solutions to information seeking problems. Many of us have an intuitive sense of how to do so, but I rarely see principled arguments–particularly from vendors who may be reluctant to forgo any use case that could translate into revenue.

Of course, it would be nice to quantify these axes, or at least to formalize them a bit more rigorously. For example, how do we measure the amount of user input into the process–particuarly for applications that may involve human input at both indexing and query time? Or how do we measure information accessibility in a corpus that might include junk (e.g., spam)?

Still, this is a nice start as a framework, and I’d be delighted to see it evolve into a tool that helps people make technology decisions.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Why The Last Decade of BI Best-Practice Architecture is Rapidly Becoming Obsolete

25 Min Read

Some Interesting Analyses

1 Min Read

New Retail Technology Opens Eyes In NYCFuture Of Decorating:…

1 Min Read

Data Mining Methodologies

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?