Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Weirdness is the “Curse of Dimensionality”
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Weirdness is the “Curse of Dimensionality”
Predictive Analytics

Weirdness is the “Curse of Dimensionality”

Editor SDC
Editor SDC
3 Min Read
SHARE

I read the following well-written section in “The Elements of Statistical Learning” by Friedman, Hastie, & Tibshirani. This curse of dimensionality is profound. I am assuming you are familiar with the k-nearest neighbors classifier, which is used to introduce the idea.

This sparked ideas in two contexts: 1) human personalities and 2) trading.
1) If you think about human personalities being a combination of real-valued variables (ex. introversion-extroversion, affectionate-cold, optimistic-depressed, driven-apathetic, etc) then this basically says that everyone is weird. Let’s say there were only 10 personality traits, then (following the unit 10D-cube example) 90% of people are located over 80% away from the center toward the fringe.
One caveat- this assumes personality traits are uniformly distributed, but due to peer pressure this is probably not the case.
2) You can’t look into the past for a setup identical to what you are currently seeing. Also, the more data streams you feed into a system, and depending on the learner you are using (ex. k-NN), the more every time slice will look absolutely unique and the harder it will be to get a historical data set large enough to teach an…


I read the following well-written section in “The Elements of Statistical Learning” by Friedman, Hastie, & Tibshirani. This curse of dimensionality is profound. I am assuming you are familiar with the k-nearest neighbors classifier, which is used to introduce the idea.

This sparked ideas in two contexts: 1) human personalities and 2) trading.
1) If you think about human personalities being a combination of real-valued variables (ex. introversion-extroversion, affectionate-cold, optimistic-depressed, driven-apathetic, etc) then this basically says that everyone is weird. Let’s say there were only 10 personality traits, then (following the unit 10D-cube example) 90% of people are located over 80% away from the center toward the fringe.
One caveat- this assumes personality traits are uniformly distributed, but due to peer pressure this is probably not the case.
2) You can’t look into the past for a setup identical to what you are currently seeing. Also, the more data streams you feed into a system, and depending on the learner you are using (ex. k-NN), the more every time slice will look absolutely unique and the harder it will be to get a historical data set large enough to teach any trend.

More Read

Analyzing and predicting user satisfaction with sponsored search
Business Rules Forum
Gaining an ‘Unfair Advantage’ with Predictive Analytics
Springwise and its network of 8,000 spotters scan the globe for…
The beef on how predictive analytics delivers business value

Feel free to add your thoughts, this seems to be a very important result so I’m sure there are more conclusions that can be drawn.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive
dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Simple Methods and Ensemble Forecasting of Elections

6 Min Read

Using Decision Modeling to Make Predictive Analytics More Pervasive

5 Min Read

US computer scientists have found that random networks – the…

1 Min Read

Here’s How to Use Decision Management to Improve Cross-Channel Experience

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?