Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Statistics and the Iranian election, ctd.
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Statistics and the Iranian election, ctd.
Uncategorized

Statistics and the Iranian election, ctd.

DavidMSmith
DavidMSmith
4 Min Read
SHARE

More statisticians are looking at the Iranian voting data for signs of fraud. Walter Mebane (University of Michigan) looks at district-level vote counts to check for violations of Benford’s Law. Benford’s Law is a characteristic of real-live numbers: the first digit is a 1 almost one-third of the time, with higher digits appearing increasingly infrequently. (It’s another example of a power-law distribution, such as we looked at with regard to city populations.) Elections that have been manipulated by hand are sometimes revealed by disaggregated poll counts violating Benford’s Law. Unfortunately, with only district-level data, deviation from Benford’s Law is unlikely…

More statisticians are looking at the Iranian voting data for signs of fraud. Walter Mebane (University of Michigan) looks at district-level vote counts to check for violations of Benford's Law. Benford's Law is a characteristic of real-live numbers: the first digit is a 1 almost one-third of the time, with higher digits appearing increasingly infrequently. (It's another example of a power-law distribution, such as we looked at with regard to city populations.) Elections that have been manipulated by hand are sometimes revealed by disaggregated poll counts violating Benford's Law.

Unfortunately, with only district-level data, deviation from Benford's Law is unlikely for this aggregated even if there were manipulation at the polling-station level, and indeed Mebane finds no such evidence in the Iranian Election data. 

More Read

The Case Against Collaboration, Part II
Mind the Gap: Cognitive Load
CTOvision.com and Facebook Connect: A Request
Common Change
Cruiser and PhoTable: Limited by your imagination
On the other hand, fitting an overdispersed Binomial model to the data reveals nine outlier districts where Ahmadinejad received an unusually high proportion of the vote (compared to Mousavi) — whether these are reasonable depends on knowledge of the political geography of Iran.

Conditioning the 2009 results on the 2005 results (when a boycott led many liberal voters — presumed Mousavi supporters — to not vote) results in a fit that one would expect "if the political processes like those that normally prevail in election in other places were also at work in the Iranian election of 2009". Yet many of those same districts as in the last analysis still appear as outliers where Ahmadinejad received significantly more support than predicted by the model. Mebane concludes:

In general, combining the 2005 and 2009 data conveys the impression that a substantial core of the 2009 results reflected natural political processes. In 2009 Ahmadinejad tended to do best in towns where his support in 2005 was highest, and he tended to do worst in towns where turnout surged the most. These natural aspects of the election results stand in contrast to the unusual pattern in which all of the notable discrepancies between the support Ahmadinejad actually received and the support the model predicts are always negative. This pattern needs to be explained before one can have confidence that natural election processes were not supplemented with artificial manipulations.

All of the analysis was done in R: the code and data and the PDF report are all available for download.
 
Stochastic Democracy: Iran Elections – FInal Update for now (via Sullivan)

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Organizational change remains notoriously elusive

3 Min Read
Image
Uncategorized

A Look at Cyber Security Trends for 2014

7 Min Read

La Trahison des Données

6 Min Read

Real-world batch versus real-world real-time

0 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?