Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Unreasonable Effectiveness of Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > The Unreasonable Effectiveness of Data
Uncategorized

The Unreasonable Effectiveness of Data

Daniel Tunkelang
Daniel Tunkelang
4 Min Read
SHARE

Over the past week, there’s been lots of commentary about “The Unreasonable Effectiveness of Data“, an article by Googlers Alon Halevy, Peter Norvig, and Fernando Pereira in the most recent issue of IEEE Intelligent Systems.

Here are a few posts that have been appearing in my RSS reader:

  • Geeking with Greg: Semantic interpretation and the effectiveness of big data
  • Jeff’s Search Engine Caffe: Statistical Learning of Semantics from Web Data
  • Matthew Hurst: Strings are not Meanings
  • Stefano’s Linotype: Unreasonable Hypocrisy

I’m intrigued by the amount of attention this paper has attracted–especially the vitriol in this Stefano’s post:

What upset me about that paper is not how they say “oh sure, structure is great, but look overhere: there is a goldmine in all the sand” (which is something I fully resonate with) but they phrased it as a fight, deterministic vs. statistical, trying to convince people that adding structure it not the way to go, it’s basically a global waste of research resources.

And yet, without the <a> tag (that is: machine-readable imposed structure), they wouldn’t be where they are, not they would be able to speak from…

More Read

MIT moves us toward automated driving
Google Chrome OS, what are they up to now?
JuiceKit Sighted in Federal IT Dashboard
Pervasive DataRush
Vivek Kundra: The Alpha CTO

Over the past week, there’s been lots of commentary about “The Unreasonable Effectiveness of Data“, an article by Googlers Alon Halevy, Peter Norvig, and Fernando Pereira in the most recent issue of IEEE Intelligent Systems.

Here are a few posts that have been appearing in my RSS reader:

  • Geeking with Greg: Semantic interpretation and the effectiveness of big data
  • Jeff’s Search Engine Caffe: Statistical Learning of Semantics from Web Data
  • Matthew Hurst: Strings are not Meanings
  • Stefano’s Linotype: Unreasonable Hypocrisy

I’m intrigued by the amount of attention this paper has attracted–especially the vitriol in this Stefano’s post:

What upset me about that paper is not how they say “oh sure, structure is great, but look overhere: there is a goldmine in all the sand” (which is something I fully resonate with) but they phrased it as a fight, deterministic vs. statistical, trying to convince people that adding structure it not the way to go, it’s basically a global waste of research resources.

And yet, without the <a> tag (that is: machine-readable imposed structure), they wouldn’t be where they are, not they would be able to speak from such a tall soapbox.

I’m actually sympathetic to the view that it’s usually better to have more data than heavier theoretical machinery. But I’ve seen this view taken to an extreme so absurd as to be worthy of an April Fool’s joke–in Chris Anderson’s Wired article about “The End of Theory“. Moreover, that same article quotes Peter Norvig as saying that “All models are wrong, and increasingly you can succeed without them.”

So perhaps Stefano is right to react so harshly.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Social Media Meets Healthcare

19 Min Read

Foster integrative thinking and collaboration across fields

3 Min Read

Why Flickr Images Boost Your Blog

5 Min Read

Do you have obsessive-compulsive data quality (OCDQ)?

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?