Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Saving Money and Lives With Predictive Maintenance
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Saving Money and Lives With Predictive Maintenance
Predictive Analytics

Saving Money and Lives With Predictive Maintenance

SaarYoskovitz
SaarYoskovitz
6 Min Read
SHARE

The future is now, and you can hear it.

It’s more important than ever to think about how we can employ predictive maintenance to keep everything, from our air conditioners to our cars, in working order. Most people only know of two ways to maintain machines — reactive maintenance or preventative maintenance. But these aren’t always the best or most cost-efficient processes.

Think about it in terms of risk management. You can take the risk and be surprised when a failure happens (reactive maintenance), pay an ongoing premium for scheduled preventative maintenance, or find a middle ground and optimize the process through predictive maintenance. With predictive maintenance, a facility looks for clues about the working condition of its mechanical equipment and acts accordingly before a catastrophe happens.

The biggest question then becomes: How do you observe the condition of the machine and then understand what your observations mean?

More Read

With physicists across the country pushing for universities to…
The Experts of Text!
ADAPA means business – Predictive Analytics in 90 seconds
We’re Not Artists: The Craft of Influencing Decision Makers
Winter of 1933 and a Story About My Second Favorite Carpenter in History

Listening to the Problem

A number of different technologies are used in predictive maintenance today. My company, Augury, utilizes ultrasonic and vibration analysis to listen to heating, ventilation, and air conditioning systems (HVAC) in order to figure out where problems exist.

Ultrasonic diagnostics can help technicians pick up on problems and pinpoint the sources. This is the first step; the one where you can definitively say, “Something is wrong.” Similarly, with infrared thermal imaging, heat is often a quick indicator that there’s something wrong with a part in a machine.

Vibration analysis can then be used to better understand what the issue is. It will help you figure out exactly what’s wrong and how to fix it.

Oil analysis is used in conjunction with these technologies to gain better insights of the inner workings of a motor. By analyzing its oil’s properties — such as consistency, viscosity, and free metal particles — in a lab, we can point to wear and high-running temperatures.

By combining these methods into a predictive maintenance plan, a facility manager can plan ahead. That way, events where machines suddenly stop working will no longer be an issue. This translates into less downtime.

But not everyone is on board with predictive maintenance.

Jumping Hurdles

The good news about moving toward more predictive diagnostics is that it could help cut maintenance costs, reduce productivity loss, increase revenue, and even reduce energy consumption.

But some companies have not completely embraced the ideas and technologies of predictive maintenance for two main reasons: expense and training.

Historically, predicting a breakdown could be very expensive. Some of the sensing equipment could reach $20,000. And even if you have the equipment, you need someone with expertise to make it work. Vibration and ultrasonic analysis require years of training and certification to use the current systems. Setting up an in-house predictive maintenance program will cost more than $120,000 for the first year.

But these costs are worth it in the long run. While predictive maintenance can be initially expensive, the long-term price tags of preventative and reactive maintenance will dissipate — and the people who are impacted by machine downtimes will be in better shape because of it.

Saving Dollars and Lives

Due to the inherent costs of predictive maintenance, facilities tend to focus on their most critical and most expensive machines while leaving the auxiliary machines to lament their time with reactive or preventive maintenance. But a chain is only as strong as its weakest link, and in the case of HVAC, a failure can cause unexpected costs — or even the loss of lives.

Just last month, it was reported that a hospital in Dallas had air conditioners that weren’t working as they should, causing problems for newborns in the neonatal intensive care unit. Additional cooling sources were brought in to the building to prevent any issues from escalating. HVAC failures in NICUs can be the difference between life and death for newborns who can’t regulate their body temperatures as easily as adults.

With more predictive maintenance, an issue like this would have been foreseen and even prevented.

How can big data help with these types of preventive maintenance? One option is to use machine learning driven HVAC software. This technology has a great track record for boosting performance.

Luckily, the cost of predictive technology continues to drop, so everyone can continue to make strides toward this more effective and efficient model of predictive maintenance.

The only question that remains is whether you’ll be ahead or behind the future of diagnostics.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

predictive analytics marketplace
AnalyticsBig DataBusiness IntelligenceModelingPredictive Analytics

Predictive Analytics in the Marketplace: Insights from PAWCON

4 Min Read
predictive analytics in cms
AnalyticsExclusivePredictive Analytics

The Fascinating Role of Predictive Analytics in CMS Today

6 Min Read

Answers to the Most Frequently Asked PAW Questions

4 Min Read

Getting to Enterprise Application 2.0

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?