Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Speed up backtesting with parallel computing
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Speed up backtesting with parallel computing
Data MiningPredictive Analytics

Speed up backtesting with parallel computing

DavidMSmith
DavidMSmith
2 Min Read
SHARE

The video from last month’s high-performance backtesting webinar is now available for replay. It’s well worth checking out, especially for the demonstration at the end (from our own Bryan Lewis). Backtesting financial models is almost always a time-consuming task. Running the model over a sequence of historical time periods can be a burden both because the model itself may be expensive to compute, and the number of time periods may be large to get sufficient resolution of the trends over time and the deviations from actual results. With a multiprocessor computer or with a simple cluster of machines running R,…

The video from last month’s high-performance backtesting webinar is now available for replay. It’s well worth checking out, especially for the demonstration at the end (from our own Bryan Lewis).

Backtesting financial models is almost always a time-consuming task. Running the model over a sequence of historical time periods can be a burden both because the model itself may be expensive to compute, and the number of time periods may be large to get sufficient resolution of the trends over time and the deviations from actual results.

More Read

Image
Big Data Is Nothing Without Its Little Brother
What Enterprises Can Learn from Major Events and Surprises in 2011
How to compare two audio files quality wise?
Big Data in the Sports Industry
Scoring data in ADAPA via web services using SQL Server Integration Services (SSIS)

With a multiprocessor computer or with a simple cluster of machines running R, you can reduce the time required (scaling by the number of processors available). Bryan gives a very neat example of using the new foreach function in ParallelR 2.0 to simply create a parallelized version of a for loop and reduce the time required for the backtesting calculation by a factor of nearly four on a quad-core machine.

REvolution Computing: High-Performance Backtesting with Vhayu and REvolution R

TAGGED:r
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

SAS formally announces integration with R in SAS/IML Studio

1 Min Read

Modeling Visualization Macros

7 Min Read

Converting time zones in R: tips, tricks and pitfalls

9 Min Read

Interactive stock visualizations with R

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?