By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in sports industry
    Here’s How Data Analytics In Sports Is Changing The Game
    6 Min Read
    data analytics on nursing career
    Advances in Data Analytics Are Rapidly Transforming Nursing
    8 Min Read
    data analytics reveals the benefits of MBA
    Data Analytics Technology Proves Benefits of an MBA
    9 Min Read
    data-driven image seo
    Data Analytics Helps Marketers Substantially Boost Image SEO
    8 Min Read
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: 4 Ways to Prevent Dirty Data From Spoiling Analytics
Share
Notification Show More
Latest News
data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security
ai in software development
3 AI-Based Strategies to Develop Software in Uncertain Times
Software
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > 4 Ways to Prevent Dirty Data From Spoiling Analytics
Best PracticesData Quality

4 Ways to Prevent Dirty Data From Spoiling Analytics

Brett Stupakevich
Last updated: 2011/04/05 at 2:55 PM
Brett Stupakevich
4 Min Read
SHARE

Dirty Data and Data Quality 300x199 photo (business intelligence)Change is good — except when change means you are constantly revising and checking databases, unsure of whether records are accurate, current, complete and useful.  Does the data allow you to do something?  If not, all you have are souvenirs from bygone days.

Dirty Data and Data Quality 300x199 photo (business intelligence)Change is good — except when change means you are constantly revising and checking databases, unsure of whether records are accurate, current, complete and useful.  Does the data allow you to do something?  If not, all you have are souvenirs from bygone days. Useful data can be contacts, marketing reports, sales figures, projections, analytics of past actions or predictive patterns for future decisions.  But, like lighting matches, some data records are single-use only and quickly obsolete. Finding details that can be recycled and reused is a greater challenge. 

Our recent post on ‘dirty data‘ got a lot of response and is another example of how analytics and business intelligence relies on content in proper context. So here are four actions you can take to improve the quality and usability of your data:

1. Decide who is in charge – Put a team together that has final authority for data hygiene or has authority to resolve conflicts over whose information is correct. Depending on your industry, regulatory controls and other issues, it may be necessary to have Sales, IT, Legal and other departments represented. When your team has an analytics and data use policy it may be necessary to consider client privacy issues, changes in access levels or even a ‘mediation’ system for deciding which database is used by which departments or operating groups.

More Read

database compliance guide

Four Strategies For Effective Database Compliance

Use this Strategic Approach to Maximize Your Data’s Value
Niche Data Tactics to Take Your Business to the Next Level
How The Explosive Growth Of Data Access Affects Your Engineer’s Team Efficiency
What Are the Most Serious Privacy Concerns Regarding Big Data?

2. Test Your Data and Programming – Savvy marketers check the bounce rates and reasons for non-delivery in testing email contacts. Look for ways to double-check your data and correlate it with other relevant information that can be useful. Set a schedule for data checking that fits your corporate need (daily, monthly and quarterly) and see how data flow and accuracy improves. Who might use that increased data and help fill in the blanks or look for the “Why” that explains the data?

3. Find An Outside Expert – Is there another company or service provider with industry averages or specific content that can help verify your information, provide context or comparison that makes your data more valuable. Linked In sends you a network update on people who have changed jobs or updated their profiles. Can your data do the same thing, reporting changes since the last report or comparing different geographic areas. Data Service Providers such as OneSource, ZoomInfo, SalesForce or Hoovers may have details that compliment your existing data records on people and companies.

4. Rinse, Lather Repeat – Your work is never done. So it may take some time to get your data to a higher level of cleanliness. Measure your progress and report your activity to get more participation. Consider ongoing programs to discard data after a specific amount of time, update a record that hasn’t been touched in, say, six months and consistently work to improve the accuracy of your data. Are your projections on-target or are they unable to provide a clear forecast?

Better data means more accurate analytics and more targeted business intelligence. Providing that valuable service — along with squeaky-clean data — could make you indispensable. And we could all use that kind of reaction.

David Wallace
Spotfire Blogging Team

Brett Stupakevich April 5, 2011
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

database compliance guide
Data Management

Four Strategies For Effective Database Compliance

8 Min Read
analyzing big data for its quality and value
Big Data

Use this Strategic Approach to Maximize Your Data’s Value

6 Min Read
niche data tactics for business success
Big Data

Niche Data Tactics to Take Your Business to the Next Level

6 Min Read
data access for engineers
Big Data

How The Explosive Growth Of Data Access Affects Your Engineer’s Team Efficiency

11 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?