Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    payment methods
    How Data Analytics Is Transforming eCommerce Payments
    10 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A free book on Geostatistical Mapping with R
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Visualization > A free book on Geostatistical Mapping with R
Data Visualization

A free book on Geostatistical Mapping with R

DavidMSmith
DavidMSmith
5 Min Read
SHARE

Tomislav Hengl of the University of Amsterdam has published new book, A Practical Guide to Geostatistical Mapping. It’s jam-packed with 291 pages on mapping and analyzing spatial data using free software including R, SAGA, GRASS, ILWIS and Google Earth, and freely-available map data. The book itself is also available for free, as an Open Access Publication. You can order the book in printed form for US$12.78, or download it for free as a PDF.

Surprisingly (given the title), this book isn’t just about visual displays of spatial data. In fact, the first two chapters offer a nice overview of statistical analysis of spatial data (although with a greater focus on continuous-field models than point-process models). If you want a concise overview of regression-kriging, this is a great resource.

R-on-topChapter 3 addresses the various software tools you’ll use to analyze the data and create the maps. Some care has been taken in considering how the software elements should be integrated, and Hengl recommends a “R on top” model, where R scripts drive the other tools. 

This is a clever move: making use of the scripting capabilities of R means you can avoid much of the …

More Read

Actuate Makes Big Play with BIRT Analytics
Data Visualization a Big Winner in Knight Challenge
Create animated graphics with R
Google’s Acquisition Spree
Storytelling with Data to Rally Support for Your Position

Tomislav Hengl of the University of Amsterdam has published new book, A Practical Guide to Geostatistical Mapping. It’s jam-packed with 291 pages on mapping and analyzing spatial data using free software including R, SAGA, GRASS, ILWIS and Google Earth, and freely-available map data. The book itself is also available for free, as an Open Access Publication. You can order the book in printed form for US$12.78, or download it for free as a PDF.

Surprisingly (given the title), this book isn’t just about visual displays of spatial data. In fact, the first two chapters offer a nice overview of statistical analysis of spatial data (although with a greater focus on continuous-field models than point-process models). If you want a concise overview of regression-kriging, this is a great resource.

R-on-topChapter 3 addresses the various software tools you’ll use to analyze the data and create the maps. Some care has been taken in considering how the software elements should be integrated, and Hengl recommends a “R on top” model, where R scripts drive the other tools. 

This is a clever move: making use of the scripting capabilities of R means you can avoid much of the tedious manual back-and-forth activities that are usually associated with working with several software tools. Hengl offers some other reasons for working with R, too (p. 90):

  • It is of high quality — It is a non-proprietary product of international collaboration between top statisticians. 
  • It helps you think critically — It stimulates critical thinking about problem-solving rather than a push the button mentality. 
  • It is an open source software — Source code is published, so you can see the exact algorithms being used; expert statisticians can make sure the code is correct.
  • It allows automation — Repetitive procedures can easily be automated by user-written scripts or functions.
  • It helps you document your work — By scripting in R, anybody is able to reproduce your work (processing metadata). You can record steps taken using history mechanism even without scripting, e.g. by using the savehistory() command.
  • It can handle and generate maps — R now also provides rich facilities for interpolation and statistical analysis of spatial data, including export to GIS packages and Google Earth. 

Chapter 4 covers the various auxiliary data sources available, listing sources global environmental and socio-economic data, and sources of maps and satellite imagery like GADM, Google Earth and MODIS. 

The remaining chapters are devoted to worked examples of spatial data analysis and mapping. By working through the examples, you can recreate charts like these (click to enlarge):

US-kriging
One minor complaint: most of the images in the book are in black-and-white (most likely to facilitate the printing process). But at least you have the R scripts and data for all exercises (these, plus updated maps, are available from the book’s website), so at least you can re-run the examples in R to recreate them in color.

Tomislav Hengl: A Practical Guide to Geostatistical Mapping (via @fernando_mayer)

Link to original post

TAGGED:r
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

payment methods
How Data Analytics Is Transforming eCommerce Payments
Analytics Big Data Exclusive
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

R/Finance 2009 roundup

8 Min Read

Demand for R Jobs on the Rise, While SAS Jobs Decline

1 Min Read

Visualizing Katrina’s Strongest Winds with R

1 Min Read

Slides from OSCON

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?