Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Scientists misusing Statistics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Scientists misusing Statistics
Uncategorized

Scientists misusing Statistics

DavidMSmith
DavidMSmith
4 Min Read
SHARE

In ScienceNews this month, there’s controversial article exposing the fact that results claimed to be “statistically significant” in scientific articles aren’t always what they’re cracked up to be. The article — titled “Odds Are, It’s Wrong” is interesting, but I take a bit of an issue with the sub-headline, “Science fails to face the shortcomings of Statistics”. As it happens, the examples in the article are mostly cases of scientists behaving badly and abusing statistical techniques and results:

  • Authors abusing P-vales to conflate statistical significance with practical significance. A for example, a drug may uncritically be described as “significantly” reducing the risk of some outcome, but the the actual scale of the statistically significant difference is so small that is has no real clinical implication.
  • Not accounting for multiple comparisons biases. By definition, a test “significant at the 95% level” has 5% chance of having occurred by random chance alone. Do enough tests, and you’ll find some indeed indicate significant differences — but there will be some fluke events in that batch. There are so many studies, experiments and tests being done…

In ScienceNews this month, there’s controversial article exposing the fact that results claimed to be “statistically significant” in scientific articles aren’t always what they’re cracked up to be. The article — titled “Odds Are, It’s Wrong” is interesting, but I take a bit of an issue with the sub-headline, “Science fails to face the shortcomings of Statistics”. As it happens, the examples in the article are mostly cases of scientists behaving badly and abusing statistical techniques and results:

More Read

No Phone… Just Email and Facebook
Big Data May Ease California Drought and Other Real-World Problems
The Importance of a Social Media Support System
Holiday Social Media and Online Presence Check Up
Guest Post by Ethan Yarbrough: Lessons Learned
  • Authors abusing P-vales to conflate statistical significance with practical significance. A for example, a drug may uncritically be described as “significantly” reducing the risk of some outcome, but the the actual scale of the statistically significant difference is so small that is has no real clinical implication.
  • Not accounting for multiple comparisons biases. By definition, a test “significant at the 95% level” has 5% chance of having occurred by random chance alone. Do enough tests, and you’ll find some indeed indicate significant differences — but there will be some fluke events in that batch. There are so many studies, experiments and tests being done today  (oftentimes, all in the same paper)that the “false discovery rate” maybe higher than we think — especially given that most nonsignificant results go unreported.

Statisticians, in general, are aware of these problems and have offered solutions: there’s a vast field of literature on multiple comparisons tests, reporting bias, and alternatives (such as Bayesian methods) to P-value tests. But more often than not, these “arcane” issues (which are actually part of any statistical training) go ignored in scientific journals. You don’t need to be a cynic to understand the motives of the authors for doing so — hey, a publication is a publication, right? — but the cooperation of the peer reviewers and editorial boards is disturbing.

ScienceNews: Odds Are, It’s Wrong

Link to original post

TAGGED:data quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Rating agency data: Getting gamed

3 Min Read

The Nine Circles of Data Quality Hell

8 Min Read
data quality
Big Data

Can Business Automation Solve Your Data Quality Problems?

6 Min Read

Not So Strange Case of Dr. Technology and Mr. Business

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?