Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Scientists misusing Statistics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Scientists misusing Statistics
Uncategorized

Scientists misusing Statistics

DavidMSmith
DavidMSmith
4 Min Read
SHARE

In ScienceNews this month, there’s controversial article exposing the fact that results claimed to be “statistically significant” in scientific articles aren’t always what they’re cracked up to be. The article — titled “Odds Are, It’s Wrong” is interesting, but I take a bit of an issue with the sub-headline, “Science fails to face the shortcomings of Statistics”. As it happens, the examples in the article are mostly cases of scientists behaving badly and abusing statistical techniques and results:

  • Authors abusing P-vales to conflate statistical significance with practical significance. A for example, a drug may uncritically be described as “significantly” reducing the risk of some outcome, but the the actual scale of the statistically significant difference is so small that is has no real clinical implication.
  • Not accounting for multiple comparisons biases. By definition, a test “significant at the 95% level” has 5% chance of having occurred by random chance alone. Do enough tests, and you’ll find some indeed indicate significant differences — but there will be some fluke events in that batch. There are so many studies, experiments and tests being done…

In ScienceNews this month, there’s controversial article exposing the fact that results claimed to be “statistically significant” in scientific articles aren’t always what they’re cracked up to be. The article — titled “Odds Are, It’s Wrong” is interesting, but I take a bit of an issue with the sub-headline, “Science fails to face the shortcomings of Statistics”. As it happens, the examples in the article are mostly cases of scientists behaving badly and abusing statistical techniques and results:

More Read

Day I: 10th Annual Panel of Peers Conference
Why Waste Time Adapting Surveys for Mobile Devices?
Who are more effective – Specialists or Generalists?
BPM Optimization and Simulation
LinkedIn Rolling Out Faceted Search!
  • Authors abusing P-vales to conflate statistical significance with practical significance. A for example, a drug may uncritically be described as “significantly” reducing the risk of some outcome, but the the actual scale of the statistically significant difference is so small that is has no real clinical implication.
  • Not accounting for multiple comparisons biases. By definition, a test “significant at the 95% level” has 5% chance of having occurred by random chance alone. Do enough tests, and you’ll find some indeed indicate significant differences — but there will be some fluke events in that batch. There are so many studies, experiments and tests being done today  (oftentimes, all in the same paper)that the “false discovery rate” maybe higher than we think — especially given that most nonsignificant results go unreported.

Statisticians, in general, are aware of these problems and have offered solutions: there’s a vast field of literature on multiple comparisons tests, reporting bias, and alternatives (such as Bayesian methods) to P-value tests. But more often than not, these “arcane” issues (which are actually part of any statistical training) go ignored in scientific journals. You don’t need to be a cynic to understand the motives of the authors for doing so — hey, a publication is a publication, right? — but the cooperation of the peer reviewers and editorial boards is disturbing.

ScienceNews: Odds Are, It’s Wrong

Link to original post

TAGGED:data quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive
qr codes for data-driven marketing
Role of QR Codes in Data-Driven Marketing
Big Data Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Entry Point: Architecture or Crumbling Foundation

3 Min Read

Data Quality – Everyone is a Stakeholder

7 Min Read

Confronting a False Positive

5 Min Read

Shut Your Mouth

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?