Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Scientists misusing Statistics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Scientists misusing Statistics
Uncategorized

Scientists misusing Statistics

DavidMSmith
DavidMSmith
4 Min Read
SHARE

In ScienceNews this month, there’s controversial article exposing the fact that results claimed to be “statistically significant” in scientific articles aren’t always what they’re cracked up to be. The article — titled “Odds Are, It’s Wrong” is interesting, but I take a bit of an issue with the sub-headline, “Science fails to face the shortcomings of Statistics”. As it happens, the examples in the article are mostly cases of scientists behaving badly and abusing statistical techniques and results:

  • Authors abusing P-vales to conflate statistical significance with practical significance. A for example, a drug may uncritically be described as “significantly” reducing the risk of some outcome, but the the actual scale of the statistically significant difference is so small that is has no real clinical implication.
  • Not accounting for multiple comparisons biases. By definition, a test “significant at the 95% level” has 5% chance of having occurred by random chance alone. Do enough tests, and you’ll find some indeed indicate significant differences — but there will be some fluke events in that batch. There are so many studies, experiments and tests being done…

In ScienceNews this month, there’s controversial article exposing the fact that results claimed to be “statistically significant” in scientific articles aren’t always what they’re cracked up to be. The article — titled “Odds Are, It’s Wrong” is interesting, but I take a bit of an issue with the sub-headline, “Science fails to face the shortcomings of Statistics”. As it happens, the examples in the article are mostly cases of scientists behaving badly and abusing statistical techniques and results:

More Read

dd
Social Karma (Part 5)
Leading Change? Know Your Entry Point
Mental Privacy Destined for Extinction?
Public Expression, Liability, and Anonymity
  • Authors abusing P-vales to conflate statistical significance with practical significance. A for example, a drug may uncritically be described as “significantly” reducing the risk of some outcome, but the the actual scale of the statistically significant difference is so small that is has no real clinical implication.
  • Not accounting for multiple comparisons biases. By definition, a test “significant at the 95% level” has 5% chance of having occurred by random chance alone. Do enough tests, and you’ll find some indeed indicate significant differences — but there will be some fluke events in that batch. There are so many studies, experiments and tests being done today  (oftentimes, all in the same paper)that the “false discovery rate” maybe higher than we think — especially given that most nonsignificant results go unreported.

Statisticians, in general, are aware of these problems and have offered solutions: there’s a vast field of literature on multiple comparisons tests, reporting bias, and alternatives (such as Bayesian methods) to P-value tests. But more often than not, these “arcane” issues (which are actually part of any statistical training) go ignored in scientific journals. You don’t need to be a cynic to understand the motives of the authors for doing so — hey, a publication is a publication, right? — but the cooperation of the peer reviewers and editorial boards is disturbing.

ScienceNews: Odds Are, It’s Wrong

Link to original post

TAGGED:data quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai kids and their parents
How Cities Use AI to Improve Playground Design
Exclusive News
human resource data
The Integration of Employee Experience with Enterprise Data Tools
Big Data Exclusive
protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

MDM Can Challenge Traditional Development Paradigms

5 Min Read

Is your data complete and accurate, but useless to your business?

8 Min Read

7/17/2009 1:59:47 PM

2 Min Read

Finding Data Quality

12 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?