By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Open Source is Opening Data to Predictive Analytics
Share
Notification Show More
Latest News
ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Open Source is Opening Data to Predictive Analytics
Predictive Analytics

Open Source is Opening Data to Predictive Analytics

DavidMSmith
Last updated: 2010/03/09 at 4:16 PM
DavidMSmith
7 Min Read
SHARE

The R Project: despite there being over 2 million users of this open-source language for statistical data analysis, you might not have heard of it … yet. You might have seen this feature in the New York Times last year, and you might have heard how REvolution Computing is enhancing and supporting R for commercial use. Because what was once a secret of drug-development statisticians at pharmaceutical companies, quants on Wall Street, and PhD-level statistical researchers around the globe (not to mention pioneers at Web 2.0 companies like Google and Facebook) is suddenly becoming mainstream. The reason? The perfect storm of a deluge of data, open-source technology, and the rise of predictive analytics.

Predictive analytics — the process of being able to infer meaningful relationships and predictions from vast quantities of data — is disrupting industries in every sector. You’ve probably seen the impact of predictive analytics yourself: ever been surprised by Amazon apparently “reading your mind” on a suggested purchase, or by LinkedIn being able to figure out who you know, but aren’t yet connected with? That’s predictive analytics in action…

More Read

predictive analytics in dropshipping

Predictive Analytics Helps New Dropshipping Businesses Thrive

Promising Benefits of Predictive Analytics in Asset Management
Use this Strategic Approach to Maximize Your Data’s Value
Albanian Bitcoin Investors Tap the Power of Predictive Analytics
Predictive Analytics Improves Trading Decisions as Euro Rebounds

The R Project: despite there being over 2 million users of this open-source language for statistical data analysis, you might not have heard of it … yet. You might have seen this feature in the New York Times last year, and you might have heard how REvolution Computing is enhancing and supporting R for commercial use. Because what was once a secret of drug-development statisticians at pharmaceutical companies, quants on Wall Street, and PhD-level statistical researchers around the globe (not to mention pioneers at Web 2.0 companies like Google and Facebook) is suddenly becoming mainstream. The reason? The perfect storm of a deluge of data, open-source technology, and the rise of predictive analytics.

Predictive analytics — the process of being able to infer meaningful relationships and predictions from vast quantities of data — is disrupting industries in every sector. You’ve probably seen the impact of predictive analytics yourself: ever been surprised by Amazon apparently “reading your mind” on a suggested purchase, or by LinkedIn being able to figure out who you know, but aren’t yet connected with? That’s predictive analytics in action. By applying advanced statistical models to data, product designers, marketers, sales organizations — basically, anyone who needs to understand the present or predict the future — are able to draw value from the data they’ve collected like never before.

Predictive analytics are only possible with data — lots of data. Just last week, the Economist published a nine-part special report on the Data Deluge. Companies like Nestlé and Walmart are collecting reams of data on individual products and consumers. And given that Nestlé (to take just one example) has more than 100,000 products in 200 countries, we’re talking about huge amounts of data being collected.

The world has largely solved the problem of how to collect and store these vast quantities of data — see David McFarlane’s post for a great review of the impact of FOSS here. But the real impact of analyzing these data sets is only just now being felt routinely. It truly is a revolution: the information that can be teased out of these data is shaking many industries to their core. This quote from the Economist special report sums it up well:

“Revolutions in science have often been preceded by revolutions in measurement,” says Sinan Aral, a business professor at New York University. Just as the microscope transformed biology by exposing germs, and the electron microscope changed physics, all these data are turning the social sciences upside down.

Open Source software is playing a key role in this revolution. A noted analyst recently wrote that the most important factor influencing the spread of predictive analytics is the growing popularity of R. And in the Economist’s special report, the combination of R and Hadoop received special attention:

A free programming language called R lets companies examine and present big data sets, and free software called Hadoop now allows ordinary PCs to analyse huge quantities of data that previously required a supercomputer. It does this by parcelling out the tasks to numerous computers at once. This saves time and money. For example, the New York Times a few years ago used cloud computing and Hadoop to convert over 400,000 scanned images from its archives, from 1851 to 1922. By harnessing the power of hundreds of computers, it was able to do the job in 36 hours.

This revolution fills me with some pride: I started pushing for broad adoption of data analytics as a crucial element in every aspect of science and business decision-making some 40 years ago, when I created SPSS (now part of IBM). The revolution began in scientific practice and now open source R (co-created by REvolution board member Robert Gentleman) represents its future. Today, all of the Fortune 500 companies use R for their data analysis. It’s used in life sciences, financial services, defense technology and other large industries requiring high performance analytical computation. 

In the coming months and years, I predict that open-source software will continue to be the driving force in analytical innovation. Open-source platforms like Hadoop, coupled with innovations in open-source file-systems, are able to adapt to the rapidly-evolving data storage and processing requirements. And it’s open-source environments like R, with its world-wide community of researchers collaborating to push the boundaries of statistical analytics, that are most likely provide the novel predictive techniques required to tease yet more accurate predictions from these huge information-age datasets. Tie that with the backing of a commercial company to provide the scalability, usability, and integration into Web-based systems that businesses require to deploy predictive analytics, and you’ve truly got a REvolution in the making.

Link to original post

TAGGED: data analysis, data quality, open source, predictive analytics, r project
DavidMSmith March 9, 2010
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

predictive analytics in dropshipping
Predictive Analytics

Predictive Analytics Helps New Dropshipping Businesses Thrive

12 Min Read
analyst,women,looking,at,kpi,data,on,computer,screen
Predictive Analytics

Promising Benefits of Predictive Analytics in Asset Management

11 Min Read
analyzing big data for its quality and value
Big Data

Use this Strategic Approach to Maximize Your Data’s Value

6 Min Read
predictive analytics helps Albanian bitcoin investors
Blockchain

Albanian Bitcoin Investors Tap the Power of Predictive Analytics

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?