By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in sports industry
    Here’s How Data Analytics In Sports Is Changing The Game
    6 Min Read
    data analytics on nursing career
    Advances in Data Analytics Are Rapidly Transforming Nursing
    8 Min Read
    data analytics reveals the benefits of MBA
    Data Analytics Technology Proves Benefits of an MBA
    9 Min Read
    data-driven image seo
    Data Analytics Helps Marketers Substantially Boost Image SEO
    8 Min Read
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Predictive Analytics World Recap
Share
Notification Show More
Latest News
data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security
ai in software development
3 AI-Based Strategies to Develop Software in Uncertain Times
Software
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Predictive Analytics World Recap
Data MiningPredictive Analytics

Predictive Analytics World Recap

DeanAbbott
Last updated: 2010/02/18 at 6:40 AM
DeanAbbott
5 Min Read
SHARE

Predictive Analytics World (PAW) just ended today, and here are a few thoughts on the conference.

PAW was a bigger conference than October’s or last February’s and it definitely felt bigger. It seemed to me that there was a larger international presence as well.

Major data mining software vendors included the ones you would expect (in alphabetical order to avoid any appearance of favoritism): Salford Systems, SAS, SPSS (an IBM company), Statsoft, and Tibco. Others who were there included Netezza (a new one for me–they have an innovative approach to data storage and retrieval), SAP, Florio (another new one for me–a drag-and-drop simulation tool) and REvolution.

One surprise to me was how many text mining case studies were presented. John Elder rightfully described text mining as “the wild west” of analytics in his talk and SAS introduced a new initiative in text analytics (including sentiment analysis, a topic that came up in several discussions I had with other attendees).

More Read

data analytics in sports industry

Here’s How Data Analytics In Sports Is Changing The Game

What Role Does Big Data Have on the Deep Web?
Use this Strategic Approach to Maximize Your Data’s Value
How Data and Smart Technology Are Helping Hospitalists
Niche Data Tactics to Take Your Business to the Next Level

A second theme emphasized by Eric Siegel in the keynote and discussed in a technical manner by Day 2 Keynote Kim Larsen was uplift modeling…


Predictive Analytics World (PAW) just ended today, and here are a few thoughts on the conference.

PAW was a bigger conference than October’s or last February’s and it definitely felt bigger. It seemed to me that there was a larger international presence as well.

Major data mining software vendors included the ones you would expect (in alphabetical order to avoid any appearance of favoritism): Salford Systems, SAS, SPSS (an IBM company), Statsoft, and Tibco. Others who were there included Netezza (a new one for me–they have an innovative approach to data storage and retrieval), SAP, Florio (another new one for me–a drag-and-drop simulation tool) and REvolution.

One surprise to me was how many text mining case studies were presented. John Elder rightfully described text mining as “the wild west” of analytics in his talk and SAS introduced a new initiative in text analytics (including sentiment analysis, a topic that came up in several discussions I had with other attendees).

A second theme emphasized by Eric Siegel in the keynote and discussed in a technical manner by Day 2 Keynote Kim Larsen was uplift modeling, or as Larsen described it, Net Lift modeling. This approach makes so much sense, that one should consider not just responders, but should instead set up data to be able to identify those individuals that respond because of the marketing campaign and not bother those who would respond anyway. I’m interested in understanding the particular way that Larsen approaches Net Lift models with variable selection and a variant of Naive Bayes.

But for me, the key is setting up the data right and Larsen described the data particularly well. A good campaign will have a treatment set and a control set, where the treatment set gets the promotion or mailing, and the control set does not. There are several possible outcomes here. First, in the treatment set, there are those individuals who would have responded anyway, those who respond because of the campaign, and those who do not respond. For the control set, there are those who respond despite not receiving a mailing, and those who do not. The problem, of course, is that in the treatment set, you don’t know which individuals would have responded if they had not been mailed, but you suspect that they look like those in the control set who responded.

A third area that struck me was that of big data. There was a session (that I missed, unfortunately) on in-database vs. in-cloud computing (by Neil Raden of Hired Brains), and Robert Grossman’s talk on building and maintaining 10K predictive models. This latter application was one that I believe will be the approach that we move toward as data size increases, where the multiple models are customized by geography, product, demographic group, etc.

I enjoyed the conference tremendously, including the conversations with attendees. One of note was the use of ensembles of clustering models that I hope will be presented at a future PAW.

TAGGED: big data, data mining
DeanAbbott February 18, 2010
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data analytics in sports industry
Big Data

Here’s How Data Analytics In Sports Is Changing The Game

6 Min Read
big data technology has helped improve the state of both the deep web and dark web
Big Data

What Role Does Big Data Have on the Deep Web?

8 Min Read
analyzing big data for its quality and value
Big Data

Use this Strategic Approach to Maximize Your Data’s Value

6 Min Read
big data and smart technology in healthcare
Big Data

How Data and Smart Technology Are Helping Hospitalists

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?