Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Prinicpal Components for Modeling
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Prinicpal Components for Modeling
Predictive Analytics

Prinicpal Components for Modeling

Editor SDC
Editor SDC
6 Min Read
SHARE

Problem Statement

Analysts constructing predictive models frequently encounter the need to reduce the size of the available data, both in terms of variables and observations. One reason is that data sets are now available which are far too large to be modeled directly in their entirety using contemporary hardware and software. Another reason is that some data elements (variables) have an associated cost. For instance, medical tests bring an economic and sometimes human cost, so it would be ideal to minimize their use if possible. Another problem is overfitting: Many modeling algorithms will eagerly consume however much data they are fed, but increasing the size of this data will eventually produce models of increased complexity without a corresponding increase in quality. Model deployment and maintenance, too, may be encumbered by extra model inputs, in terms of both execution time and required data preparation and storage.

Naturally, the goal in data reduction is to decrease the size of needed data…


Problem Statement

More Read

Careful with the S-word
Smarter Planet Means the Deep Web The Deep Web (or Deepnet,…
How To Use Big Data To Deliver Optimized Customer Experiences
On Best Buy’s success and being decision-centric
Analytics run amok?

Analysts constructing predictive models frequently encounter the need to reduce the size of the available data, both in terms of variables and observations. One reason is that data sets are now available which are far too large to be modeled directly in their entirety using contemporary hardware and software. Another reason is that some data elements (variables) have an associated cost. For instance, medical tests bring an economic and sometimes human cost, so it would be ideal to minimize their use if possible. Another problem is overfitting: Many modeling algorithms will eagerly consume however much data they are fed, but increasing the size of this data will eventually produce models of increased complexity without a corresponding increase in quality. Model deployment and maintenance, too, may be encumbered by extra model inputs, in terms of both execution time and required data preparation and storage.

Naturally, the goal in data reduction is to decrease the size of needed data, while maintaining (as much as is possible) model performance, this process must be performed carefully.

A Solution: Principal Components

Selection of candidate predictor variables to retain (or to eliminate) is the most obvious way to reduce the size of the data. If model performance is not to suffer, though, then some effective measure of each variable’s usefulness in the final model must be employed- which is complicated by the correlations among predictors. Several important procedures have been developed along these lines, such as forward selection, backward selection and stepwise selection.

Another possibility is principal components analysis (“PCA” to his friends), which is a procedure from multivariate statistics which yields a new set of variables (the same number as before), called the principal components. Conveniently, all of the principal components are simply linear functions of the original variables. As a side benefit, all of the principal components are completely uncorrelated. The technical details will not be presented here (see the reference, below), but suffice it to say that if 100 variables enter PCA, then 100 new variables (called the principal components come out. You are now wondering, perhaps, where the “data reduction” is? Simple: PCA constructs the new variables so that the first principal component exhibits the largest variance, the second principal component exhibits the second largest variance, and so on.

How well this works in practice depends completely on the data. In some cases, though, a large fraction of the total variance in the data can be compressed into a very small number of principal components. The data reduction comes when the analyst decides to retain only the first n principal components.

Note that PCA does not eliminate the need for the original variables: they are all still used in the calculation of the principal components, no matter how few of the principal components are retained. Also, statistical variance (which is what is concentrated by PCA) may not correspond perfectly to “predictive information”, although it is often a reasonable approximation.

Last Words

Many statistical and data mining software packages will perform PCA, and it is not difficult to write one’s own code. If you haven’t tried this technique before, I recommend it: It is truly impressive to see PCA squeeze 90% of the variance in a large data set into a handful of variables.

Note: Related terms from the engineering world: eigenanalysis, eigenvector and eigenfunction.

Reference

For the down-and-dirty technical details of PCA (with enough information to allow you to program PCA), see:

Multivariate Statistical Methods: A Primer, by Manly (ISBN: 0-412-28620-3)

Note: The first edition is adequate for coding PCA, and is at present much cheaper than the second or third editions.

TAGGED:data qualitydata reductionpredictive modeling
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

DQ-Tip: “Don’t pass bad data on to the next person…”

3 Min Read
The Challenges and Solutions of Big Data Testing
Big DataData ManagementData QualitySoftware

The Challenges and Solutions of Big Data Testing

7 Min Read

The Very Model of a Modern DQ General

4 Min Read

Hell is other people’s data

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?