Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Economist or Iconomist?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Economist or Iconomist?
Business IntelligencePredictive Analytics

Economist or Iconomist?

GaryCokins
GaryCokins
7 Min Read
SHARE

Have you heard the joke about economists? Most of them are saying iconomist seeing the 2009 global credit crisis.

As volatility increases – such as oil prices, foreign currency exchange rates, and commodity prices – the task of macro-economic analysis becomes more challenging. The world is becoming more complicated in part due to the speed at which information flows. The same challenges apply to micro-economics, and that directly impacts the decisions individual commercial companies and public sector government agencies must deal with.

What is an executive to do? There is more uncertainty and risk. My belief is there is not much of an alternative than to become much more analytical. This means digging deeper into the mountains of data one already has as well as becoming more proficient at predicting the future. Unfortunately most companies are far from where they want and need to be when it comes to implementing analytics. They are still relying on gut feeling…

More Read

Team Obama Mastered the Science of Mass Persuasion — and Won
Choosing Your Business Intelligence Solution: Don’t Be Afraid of the “Smoosh-ins®”
How Biostatistics and Spatio-Temporal Modeling Can Be Used to Protect Human Health
The Big Data Debate: Correlation vs. Causation
Some cities are examining the possibility of installing data…

 

Have you heard the joke about economists? Most of them are saying iconomist seeing the 2009 global credit crisis.

As volatility increases – such as oil prices, foreign currency exchange rates, and commodity prices – the task of macro-economic analysis becomes more challenging. The world is becoming more complicated in part due to the speed at which information flows. The same challenges apply to micro-economics, and that directly impacts the decisions individual commercial companies and public sector government agencies must deal with.

What is an executive to do? There is more uncertainty and risk. My belief is there is not much of an alternative than to become much more analytical. This means digging deeper into the mountains of data one already has as well as becoming more proficient at predicting the future. Unfortunately most companies are far from where they want and need to be when it comes to implementing analytics. They are still relying on gut feeling, rather than hard data, when making decisions. They are short on the skilled talent and the technologies to perform analytics. What is needed by executive leaders is to create a culture for metrics in their organizations.

But what does this mean? It means that high-performing enterprises should build their competitive strategies around data-driven insights that generate results from the power of analytics of all flavors, such as segmentation and regression analysis. Commercial companies need to successfully leverage data to out-think, out-smart, and out-execute their rivals. Public sector organizations need to get more yield from their resources – more with less.

To create a culture for metrics also means clarifying some of the confusion in the marketplace about analytics, especially predictive analytics. For example, there is confusion about the difference between forecasting and predictive modeling. Here is a quick analogy to illustrate the difference:

 
•    Forecasts tell you how many ice cream cones will be sold in July, so you can set expectations for planned costs, profits, supply chain impacts and other considerations.

•    Predictive models tell you the characteristics of ideal ice cream customers, the flavors they will choose and coupon offers that will entice them.
If your goal is to do a better job of buying raw materials for the ice cream and to have them at the factory at the right time, your company needs a forecasting solution. If the marketing department is trying to figure out how, where and which most attractive customers to market the ice cream, it needs predictive modeling.

Consider these real-world forecasting examples. The hospitality industry uses forecasting to determine demand for particular rooms or properties. Financial companies use it to generate accurate sales forecasts, which feed into the planning process. Retailers create forecasts to manage pricing, staffing and inventory.

Predictive modeling delivers a different set of answers. In retail, predictive modeling identifies the most profitable customers and the underlying reasons for their loyalty. In finance, credit scoring is a type of predictive modeling used to grow customer profitability and reduce risk exposure. In the life sciences, it helps companies find promising new molecular drug compounds.
 
Another source of confusion involves risk management. It is not only about minimizing an organization’s risk exposure. Quite the contrary, it is all about exploiting risk for maximum competitive advantage. A risky business strategy and plan always carries high prices. Effective risk management practices are comprehensive in recognizing and evaluating all potential risks. Its goal is less volatility, greater predictability, fewer surprises, and arguably most important the ability to bounce back quickly after a risk event occurs.  

A simple view of risk is that more things can happen than will happen. If we can devise probabilities of possible outcomes, then we can consider how we will deal with surprises–outcomes that are different from what we expect. We can evaluate the consequences of being wrong in our expectations. In short, risk management is about dealing in advance with the consequences of being wrong. Most organizations can not quantify their risk exposure and have no common basis to evaluate their risk appetite relative to their risk exposure. Risk appetite is the amount of risk an organization is willing to absorb to generate the returns it expects to gain. The objective is not to eliminate all risk, but rather to match risk exposure to risk appetite.

Twenty years from now will we look back at the last half century and observe there were six IT eras: mainframes, minicomputers, PCs, ERP, the Internet, and now analytics? Forecast, predictive model, or speculation? My crystal ball is clear. Analytics will become mainstream.

Gary Cokins

TAGGED:analytics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

A story about the power of rules to improve analytic decisions

4 Min Read

Handling The Big Data Faucet

4 Min Read

New Companies Making Their Fortunes Powered By Analytics And Business Intelligence

3 Min Read

How can Enterprise Performance Management be Summarized?

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?