Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Saturday notes: The Frick and curve balls
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Saturday notes: The Frick and curve balls
Uncategorized

Saturday notes: The Frick and curve balls

StephenBaker1
StephenBaker1
4 Min Read
SHARE

Vermeer’s ‘Officer and Laughing Girl‘

Yesterday, after lunch in Midtown, I walked up to the Frick Collection. It’s a spectacular collection of European art–like a highly condensed version of the Louvre. The Web site lets you explore and zoom in on the paintings. Check out, for example, the sleeve on this Rembrandt self portrait.

Henry Clay Frick was a coal (coke) baron in Western Pennsylvania and made his money from the steel industry. He ordered the deadly crackdown at the Carnegie mill at Homestead, in 1892. This piqued my interest in the Goya that he bought (below), which features steelworkers.

More Read

Leveraging Complexity to Create Value
How Big Data Is Transforming Airports
SaaS Buyers and Customers Beware: Data Issues Are Cloudy
ADAPA Predictive Analytics Scoring Engine – Demo Video
Real-Time But Not Ready For Prime Time

Speaking of steel, I’m heading out to Pittsburgh next week for a reporting trip, following a Lunch forum Monday at Penn State.

Goya’s ‘The Forge’

***

In my baseball geeky way, I’m enjoying this statistical study on the effectiveness of fastballs. The conclusion, based on the crunching of millions of pitches and the weighing of hundreds of variables, is that pitchers rely too much on the fastball.

A common example…

Vermeer’s ‘Officer and Laughing Girl‘

Yesterday, after lunch in Midtown, I walked up to the Frick
Collection
. It’s a spectacular collection of European art–like a
highly condensed version of the Louvre. The Web site lets you explore
and zoom in on the paintings. Check out, for example, the sleeve on
this Rembrandt self portrait.

Henry Clay Frick was a coal (coke) baron in Western Pennsylvania and made his money from the steel industry. He ordered the deadly crackdown at the Carnegie mill at Homestead, in 1892. This piqued my interest in the Goya that he bought (below), which features steelworkers.

Speaking of steel, I’m heading out to Pittsburgh next week for a reporting trip, following a Lunch forum Monday at Penn State.

Goya’s ‘The Forge’

***

In my baseball geeky way, I’m enjoying this statistical study
on the effectiveness of fastballs. The conclusion, based on the
crunching of millions of pitches and the weighing of hundreds of
variables, is that pitchers rely too much on the fastball.

A common example. Let’s say a
pitcher is behind in the count, 3-1, to a good hitter. One more ball and the batter
walks. So the batter is expecting a fastball, which is easier for the
pitcher to control. He’s ‘sitting’ on the pitch, in baseball parlance.
And his chance of getting a hit are higher. Cagey pitchers with great
control, like Greg Maddux and Jamie Moyer, built careers from throwing
change-ups and curves in hitter’s counts.

Statistics indicate that others should do the same. The danger of
walking the batter by throwing a bad curve, it appears, is less than
the risk that comes from throwing a fastball he’s ready for. This is
the way pitchers throw to great hitters like Albert Pujols. Now it
seems they should treat every batter like a superstar. (For those eager to dive deeper into baseball math, here’s a post on how outfielders calculate the trajectory of fly balls.)

Link to original post

TAGGED:statistical analysis
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Web Lies, Damned Lies, and Statistics

5 Min Read

It Takes Courage to Compete on Analytics

6 Min Read

The impact of the drug war in Mexico

3 Min Read

R and the Next Big Thing

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?