Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Time-warping: How can it help predict baseball?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Time-warping: How can it help predict baseball?
Predictive Analytics

Time-warping: How can it help predict baseball?

StephenBaker1
StephenBaker1
4 Min Read
SHARE

A couple of months ago, I was talking to Anne Milley, director of analytical intelligence strategy at SAS. She was telling me about time-warping. That’s a method for assessing greater significance to events that happen in certain times.

The most common is to give more weight to the most recent events. The book I looked for yesterday is probably more a predictor of my interest tomorrow than one I searched for in 2004. But how much more relevant is it? Statisticans can study patterns across large populations and come up with time-warping formulas. I would imagine that they vary from sector to sector. A three-year-old search for hospice treatment probably has close to zero predictive power at this point. But if you were looking for Bob Dylan songs back then, you’re probably still interested.

This type of analysis is going to become ever more pervasive as we generate more time-stamped data with our smart phones. Of course, the trick then will be to warp for both time and place. The variations are endless.

Adrian Beltre

More Read

big data
The Journey from Big Data to Big Promise
Analytics BS: 3 Questions to Spot It
Social Media: Back to Spreadsheets
Is Your Company Ready to Deploy Business Intelligence Intelligently?
Dietrich acknowledged that some of what she and her fellow…

I would imagine that Nate Silver, the baseball and political statistician I interviewed last spring at South by SouthWest, has sophisticated time-warping …



A couple of months ago, I was talking to Anne Milley, director of analytical intelligence strategy at SAS. She was telling me about time-warping. That’s a method for assessing greater significance to events that happen in certain times.

The most common is to give more weight to the most recent events. The book I looked for yesterday is probably more a predictor of my interest tomorrow than one I searched for in 2004. But how much more relevant is it? Statisticans can study patterns across large populations and come up with time-warping formulas. I would imagine that they vary from sector to sector. A three-year-old search for hospice treatment probably has close to zero predictive power at this point. But if you were looking for Bob Dylan songs back then, you’re probably still interested.

This type of analysis is going to become ever more pervasive as we generate more time-stamped data with our smart phones. Of course, the trick then will be to warp for both time and place. The variations are endless.

Adrian Beltre

I would imagine that Nate Silver, the baseball and political
statistician I interviewed last spring at South by SouthWest, has
sophisticated time-warping models for baseball players. Since the Phillies are in the market for a third baseman, I’ve been thinking recently about Adrian Beltre, who had one great year at the hot corner for the Dodgers. As a
25-year-old, he hit 48 home runs in 2004 — but hasn’t hit more than 26
in a season since then. I would think that time-warping would almost
discount that one season as a near meaningless blip. Now that I think
about it, there’s a chance it’s not meaningless at all: After 2004, baseball
started testing much more vigorously for steroids.

That raises another challenge for statisticians: Drug warp.

Link to original post

TAGGED:anne milley
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Better customer service, better results with predictive analytics

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?